

Equations in Wreath Products of Abelian Groups

Jan Philipp Wächter

Department of Mathematics University of Manchester

joint work with

Ruiwen Dong and Leon Pernak

This research was supported by EPSRC

11 November 2025

Hilbert's 10th Problem

Hilbert's 10th Problem

Is the problem

Input:

Question:

decidable?

Hilbert's 10th Problem

Is the problem

Input: a polynomial $p \in \mathbb{Z}[X_1, \dots, X_\ell]$?

Question:

decidable?

Hilbert's 10th Problem

Is the problem

Input: a polynomial $p \in \mathbb{Z}[X_1, \dots, X_\ell]$?

Question: are there values $z_1, \ldots, z_\ell \in \mathbb{Z}$ for the variables such that $p(z_1, \ldots, z_\ell) = 0$?

decidable?

Hilbert's 10th Problem

Is the problem

Input: a polynomial $p \in \mathbb{Z}[X_1, \dots, X_\ell]$?

Question: are there values $z_1, \ldots, z_\ell \in \mathbb{Z}$ for the variables such that $p(z_1, \ldots, z_\ell) = 0$?

decidable?

Theorem (Matiyasevich; 1970)

The problem is undecidable.

Theorem (Presburger; 1929)

The Presburger arithmetic over the natural numbers/integers is decidable.

Theorem (Presburger; 1929) Allowed oprations: $\exists, \forall, \land, \lor, \neg, +, =, <, \mathbb{N}$

The Presburger arithmetic over the natural numbers/integers is decidable.

Theorem (Presburger; 1929) Allowed oprations: $\exists, \forall, \land, \lor, \neg, +, =, <, \mathbb{N}$

The Presburger arithmetic over the natural numbers/integers is decidable.

No multiplication!

Theorem (Presburger; 1929) Allowed oprations: $\exists, \forall, \land, \lor, \neg, +, =, <, \mathbb{N}$

The Presburger arithmetic over the natural numbers/integers is decidable.

No multiplication!

Theorem (Tarski; 1930s/1948)

The first-order theory of the real numbers (with rational coefficients) is decidable.

Theorem (Presburger; 1929) Allowed oprations: $\exists, \forall, \land, \lor, \neg, +, =, <, \mathbb{N}$

The Presburger arithmetic over the natural numbers/integers is decidable.

No multiplication!

Allowed oprations:

Theorem (Tarski; 1930s/1948)

$$\nearrow \exists X \in \mathbb{R}, \forall X \in \mathbb{R}, \land, \lor, \neg, p = 0, p < 0, \mathbb{Q}$$

The first-order theory of the real numbers (with rational coefficients) is decidable.

Allowed oprations: $\exists, \forall, \land, \lor, \neg, +, =, <, \mathbb{N}$ Theorem (Presburger: 1929)

The Presburger arithmetic over the natural numbers/integers is decidable.

No multiplication!

Allowed oprations:

Theorem (Tarski; 1930s/1948) $\nearrow \exists X \in \mathbb{R}, \forall X \in \mathbb{R}, \land, \lor, \neg, p = 0, p < 0, \mathbb{Q}$

The first-order theory of the real numbers (with rational coefficients) is decidable.

Where is the border between decidability and undecidability?

Definition

G: group X: finite set of variables

F(X): free group over X

Definition

G: group \mathbb{X} : finite set of variables $F(\mathbb{X})$: free group over \mathbb{X} An equation over G is an element w of $G\star F(\mathbb{X})$ written as

w=1.

Definition

G: group \mathbb{X} : finite set of variables $F(\mathbb{X})$: free group over \mathbb{X}

An equation over G is an element w of $G\star F(\mathbb{X})$ written as

w=1.

A system of equations is simply a set $\{w_1 = 1, \dots\}$ of equations.

Definition

G: group \mathbb{X} : finite set of variables $F(\mathbb{X})$: free group over \mathbb{X}

An equation over G is an element w of $G \star F(X)$ written as

$$w = 1$$
.

A system of equations is simply a set $\{w_1 = 1, \dots\}$ of equations.

For algorithms:

Consider finitely generated groups $G = \langle \Sigma \rangle$ and represent the w_i as words from $(\Sigma^{\pm 1} \cup \mathbb{X}^{\pm 1})^*$.

Definition

G: group \mathbb{X} : finite set of variables $F(\mathbb{X})$: free group over \mathbb{X}

An equation over G is an element w of $G \star F(X)$ written as

$$w = 1$$
.

A system of equations is simply a set $\{w_1 = 1, \dots\}$ of equations.

For algorithms:

Consider finitely generated groups $G = \langle \Sigma \rangle$ and represent the w_i as words from $(\Sigma^{\pm 1} \cup \mathbb{X}^{\pm 1})^*$.

Definition

An assignment of variables is a function $\sigma: \mathbb{X} \to G$.

Definition

G: group \mathbb{X} : finite set of variables $F(\mathbb{X})$: free group over \mathbb{X}

An equation over G is an element w of $G \star F(X)$ written as

$$w = 1$$
.

A system of equations is simply a set $\{w_1 = 1, \dots\}$ of equations.

For algorithms:

Consider finitely generated groups $G = \langle \Sigma \rangle$ and represent the w_i as words from $(\Sigma^{\pm 1} \cup \mathbb{X}^{\pm 1})^*$.

Definition

An assignment of variables is a function $\sigma \colon \mathbb{X} \to G$.

We may extend it uniquely into a homomorphism $G\star F(\mathbb{X})\to G$ by letting $\sigma(g)=g\ \forall g\in G$.

Definition

G: group \mathbb{X} : finite set of variables $F(\mathbb{X})$: free group over \mathbb{X}

An equation over G is an element w of $G\star F(\mathbb{X})$ written as

$$w = 1$$
.

A system of equations is simply a set $\{w_1 = 1, \dots\}$ of equations.

For algorithms:

Consider finitely generated groups $G = \langle \Sigma \rangle$ and represent the w_i as words from $(\Sigma^{\pm 1} \cup \mathbb{X}^{\pm 1})^*$.

Definition

An assignment of variables is a function $\sigma: \mathbb{X} \to G$.

We may extend it uniquely into a homomorphism $G\star F(\mathbb{X})\to G$ by letting $\sigma(g)=g\ \forall g\in G.$

It satisfies (is a solution of) a system $\{w_i = 1\}$ if $\sigma(w_i) = 1$ holds in G for all i.

Definition (Diophantine Problem)

The Diophantine problem DP is the decision problem:

Constant: the group $G = \langle \Sigma \rangle$

Input: a finite system of equations $\{w_1 = 1, \dots, w_\ell = 1\}$

Question: is the system satisfiable?

Definition (Diophantine Problem)

The Diophantine problem DP_1 is the decision problem:

Constant: the group $G = \langle \Sigma \rangle$ single equation Input: a finite system of equations $\{w_1 = 1, \dots, w_\ell = 1\}$

Question: is the system satisfiable?

equation

Definition (Diophantine Problem)

The Diophantine problem DP_1 is the decision problem:

Constant: the group $G = \langle \Sigma \rangle$ single equation

Input: a finite system of equations $\{w_1 = 1, ..., w_{\ell} = 1\}$

Question: is the system satisfiable?

equation

Definition (Diophantine Problem)

The Diophantine problem DP_1 is the decision problem:

Constant: the group $G = \langle \Sigma \rangle$ single equation

Input: a finite system of equations $\{w_1 = 1, \dots, w_\ell = 1\}$

Question: is the system satisfiable?

equation

Some decidability results:

• DP is decidable in free groups (Makanin 1982, Razborov 1984)

Definition (Diophantine Problem)

The Diophantine problem DP_1 is the decision problem:

Constant: the group $G = \langle \Sigma \rangle$ single equation Input: a finite system of equations $\{w_1 = 1, \dots, w_\ell = 1\}$

Question: is the system satisfiable?

equation

- DP is decidable in free groups (Makanin 1982, Razborov 1984)
- \bullet DP₁ is decidable in the Heisenberg group (Duchin-Liang-Shapiro 2015)

Definition (Diophantine Problem)

The Diophantine problem DP_1 is the decision problem:

```
Constant: the group G = \langle \Sigma \rangle single equation Input: a finite system of equations \{w_1 = 1, \dots, w_\ell = 1\}
```

Question: is the system satisfiable?

equation

- DP is decidable in free groups (Makanin 1982, Razborov 1984)
- DP₁ is decidable in the Heisenberg group (Duchin-Liang-Shapiro 2015)
- DP_1 is undecidable in free metabelian groups of rank ≥ 2 (Roman'kov 1979)

Definition (Diophantine Problem)

The Diophantine problem DP_1 is the decision problem:

```
Constant: the group G = \langle \Sigma \rangle single equation
```

Input: a finite system of equations $\{w_1 = 1, \dots, w_\ell = 1\}$

Question: is the system satisfiable?

- DP is decidable in free groups (Makanin 1982, Razborov 1984)
- \bullet DP₁ is decidable in the Heisenberg group (Duchin-Liang-Shapiro 2015)
- DP_1 is undecidable in free metabelian groups of rank ≥ 2 (Roman'kov 1979)
- DP₁ is undecidable in non-abelian free nilpotent groups (Truss '95; Duchin-Liang-Shapiro 2015)

Definition (Diophantine Problem)

The Diophantine problem DP_1 is the decision problem:

```
Constant: the group G = \langle \Sigma \rangle single equation
```

Input: a finite system of equations $\{w_1 = 1, ..., w_{\ell} = 1\}$

Question: is the system satisfiable?

equation

- DP is decidable in free groups (Makanin 1982, Razborov 1984)
- \bullet DP₁ is decidable in the Heisenberg group (Duchin-Liang-Shapiro 2015)
- DP₁ is undecidable in free metabelian groups of rank ≥ 2 (Roman'kov 1979)
- \bullet DP $_1$ is undecidable in non-abelian free nilpotent groups (Truss '95; Duchin-Liang-Shapiro 2015)
- DP is undecidable in $\mathbb{Z} \wr \mathbb{Z}$ (Dong 2024)

The word problem is Dehn's first fundamental problem in algorithmic group theory:

The word problem is Dehn's first fundamental problem in algorithmic group theory:

Definition (Word Problem)

The word problem of a finitely generated group is the decision problem:

Constant: the group $G = \langle \Sigma \rangle$

Input: a word $w \in (\Sigma \cup \Sigma^{-1})^*$ over the generators

Question: is w = 1 in G? i. e. does w represent the identity?

The word problem is Dehn's first fundamental problem in algorithmic group theory:

Definition (Word Problem)

The word problem of a finitely generated group is the decision problem:

Constant: the group $G = \langle \Sigma \rangle$

Input: a word $w \in (\Sigma \cup \Sigma^{-1})^*$ over the generators

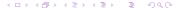
Question: is w = 1 in G? i. e. does w represent the identity?

This is a special form of DP_1 where the equation only contains constants.

Connection II: the Conjugacy Problem

Connection II: the Conjugacy Problem

Dehn's second fundamental problem in algorithmic group theory is the conjugacy problem:



Connection II: the Conjugacy Problem

Dehn's second fundamental problem in algorithmic group theory is the conjugacy problem:

Definition (Conjugacy Problem)

The conjugacy problem of a finitely generated group is the decision problem:

Constant: the group $G = \langle \Sigma \rangle$

Input: two group elements $g, h \in G$ represented as words from $(\Sigma \cup \Sigma^{-1})^*$

Question: are g and h conjugate in G?

Connection II: the Conjugacy Problem

Dehn's second fundamental problem in algorithmic group theory is the conjugacy problem:

Definition (Conjugacy Problem)

The conjugacy problem of a finitely generated group is the decision problem:

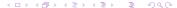
Constant: the group $G = \langle \Sigma \rangle$

Input: two group elements $g, h \in G$ represented as words from $(\Sigma \cup \Sigma^{-1})^*$

Question: are g and h conjugate in G?

This is equivalent to asking whether $ZgZ^{-1}=h$ has a solution in G and, thus, a special form of DP_1 as well.

We can...



We can...

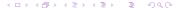
• ...ask about the computational complexity of the problem.

We can...

- ...ask about the computational complexity of the problem.
- ...compute the full solution set.

We can...

- ...ask about the computational complexity of the problem.
- ...compute the full solution set.
- ...consider more restricted equations.



We can...

- ...ask about the computational complexity of the problem.
- ...compute the full solution set.
- ...consider more restricted equations.

For example...

Definition (Quadratic Equation)

An equation w = 1 over some group G is quadratic if it contains every variable at most twice where we count each X and X^{-1} as one occurrence of X.

Definition (Quadratic Equation)

An equation w = 1 over some group G is quadratic if it contains every variable at most twice where we count each X and X^{-1} as one occurrence of X.

Fact

We only need to consider quadratic equations where every variable appears exactly twice.

Definition (Quadratic Equation)

An equation w=1 over some group G is quadratic if it contains every variable at most twice where we count each X and X^{-1} as one occurrence of X.

Fact

We only need to consider quadratic equations where every variable appears exactly twice.

Proof.

Definition (Quadratic Equation)

An equation w = 1 over some group G is quadratic if it contains every variable at most twice where we count each X and X^{-1} as one occurrence of X.

Fact

We only need to consider quadratic equations where every variable appears exactly twice.

Proof.

Suppose: *X* has one occurrence in *w* (i. e. $w = uX^{\varepsilon}v$ for $\varepsilon \in \{-1, 1\}$).

Definition (Quadratic Equation)

An equation w=1 over some group G is quadratic if it contains every variable at most twice where we count each X and X^{-1} as one occurrence of X.

Fact

We only need to consider quadratic equations where every variable appears exactly twice.

Proof.

Suppose: X has one occurrence in w (i. e. $w = uX^{\varepsilon}v$ for $\varepsilon \in \{-1, 1\}$).

Then: $\sigma(\mathbf{w}) = 1 \iff \sigma(\mathbf{X})^{\varepsilon} = \sigma(\mathbf{u}^{-1}\mathbf{v}^{-1})$

Definition (Quadratic Equation)

An equation w = 1 over some group G is quadratic if it contains every variable at most twice where we count each X and X^{-1} as one occurrence of X.

Fact

We only need to consider quadratic equations where every variable appears exactly twice.

Proof.

Suppose: X has one occurrence in w (i. e. $w = uX^{\varepsilon}v$ for $\varepsilon \in \{-1, 1\}$).

Then: $\sigma(w) = 1 \iff \sigma(X)^{\varepsilon} = \sigma(u^{-1}v^{-1})$ and we always have a solution.

Proposition (Comerford, Edmunds 1981 (?))

Every quadratic equation w = 1 can be normalized into one of following three forms:

Proposition (Comerford, Edmunds 1981 (?))

Every quadratic equation w = 1 can be normalized into one of following three forms:

$$\bullet \prod_{i=1}^{\ell} Z_i c_i Z_i^{-1} = 1$$

(for constants $c_i \in G$)

Proposition (Comerford, Edmunds 1981 (?))

Every quadratic equation w = 1 can be normalized into one of following three forms:

$$\mathbf{1} \prod_{i=1}^{\ell} Z_i c_i Z_i^{-1} = 1$$

"spherical form"

"orientable form"

(for constants $c_i \in G$)

Proposition (Comerford, Edmunds 1981 (?))

Every quadratic equation w = 1 can be normalized into one of following three forms:

$$\mathbf{1} \prod_{i=1}^{\ell} Z_i c_i Z_i^{-1} = 1$$

"spherical form"

"orientable form"

3
$$\prod_{j=1}^{d} Y_j^2 \prod_{i=1}^{\ell} Z_i c_i Z_i^{-1} = 1$$

"nonorientable form"

(for constants $c_i \in G$)

Proposition (Comerford, Edmunds 1981 (?))

Every quadratic equation w = 1 can be normalized into one of following three forms:

$$\mathbf{0} \prod_{i=1}^{\ell} Z_i c_i Z_i^{-1} = 1$$

"spherical form"

"orientable form"

"nonorientable form"

(for constants $c_i \in G$)

In fact: The normal form can be efficiently computed.

Theorem (Dong, Pernak, W.; WIP)

 ${\rm QUADRATIC}DP_1 \ \textit{is decidable in every (restricted) wreath product of abelian groups A \textit{ and B}}.$

Theorem (Dong, Pernak, W.; WIP)

 ${\rm QUADRATIC} DP_1 \ \textit{is decidable in every (restricted) wreath product of abelian groups A \textit{ and B}}.$

Theorem (Ushakov, Weiers; 2025)

ORIENTABLEQUADRATICDP₁ is decidable in every $A \wr B$.

Theorem (Dong, Pernak, W.; WIP)

 ${\rm QUADRATIC} DP_1 \ \textit{is decidable in every (restricted) wreath product of abelian groups A \textit{ and B}}.$

Theorem (Ushakov, Weiers; 2025)

Orientable Quadratic DP_1 is decidable in every $A \wr B$.

Proposition

Theorem (Dong, Pernak, W.; WIP)

 ${
m QUADRATIC}{
m DP}_1$ is decidable in every (restricted) wreath product of abelian groups A and B.

Theorem (Ushakov, Weiers; 2025)

Orientable Quadratic DP_1 is decidable in every $A \wr B$.

Proposition

The problem

Constant: any group $A \wr B$ for abelian groups A and B

Input: a nonorientable equation $\prod_{s=1}^{S} Y_s \prod_{k=1}^{K} Z_k c_k Z_k^{-1} = 1$ for $c_k \in A \setminus B$

Question: does it have a solution?

is decidable.

We will solve spherical equations in groups of the form $A \wr B$ where A and B are abelian groups.

We will solve spherical equations in groups of the form $A \wr B$ where A and B are abelian groups.

For this: We need two views:

We will solve spherical equations in groups of the form $A \wr B$ where A and B are abelian groups.

For this: We need two views:

1 the geometric view

We will solve spherical equations in groups of the form $A \wr B$ where A and B are abelian groups.

For this: We need two views:

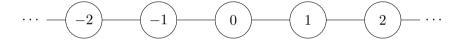
- 1 the geometric view and
- 2 a view based on rings/Laurent polynomials.

We will solve spherical equations in groups of the form $A \wr B$ where A and B are abelian groups.

For this: We need two views:

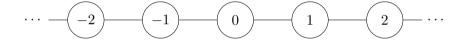
- 1 the geometric view and
- 2 a view based on rings/Laurent polynomials.

We will start with the classic lamplighter group $L_2 = \mathbb{Z}/2\mathbb{Z} \wr \mathbb{Z}$.

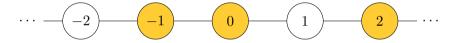


An element of the lamplighter group is represented by

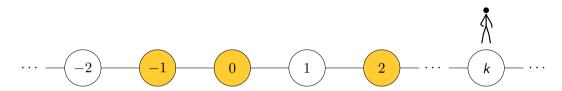
• an bi-infinite chain of lamps



- an bi-infinite chain of lamps where
- almost all lamps are off



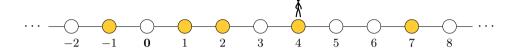
- an bi-infinite chain of lamps where
- almost all lamps are off but
- a finite set of lamps may be on



- an bi-infinite chain of lamps where
- almost all lamps are off but
- a finite set of lamps may be on and by
- the location of the lamplighter.

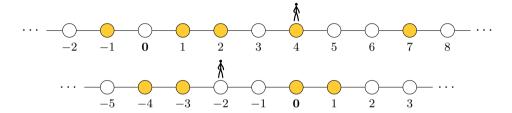
The Product in the Lamplighter Group

The Product in the Lamplighter Group

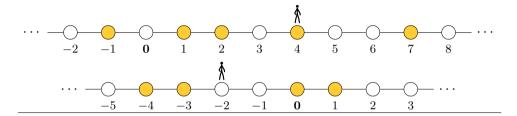


• Consider the first group element.

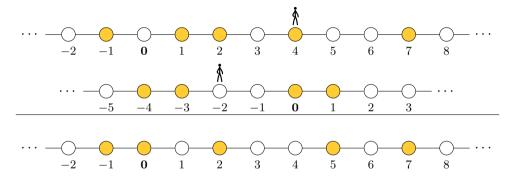
The Product in the Lamplighter Group



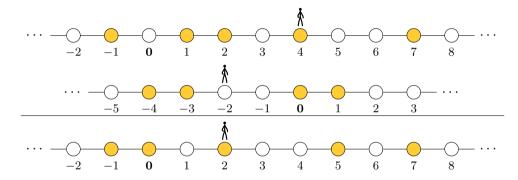
- Consider the first group element.
- Move the 0-lamp of the second element to the lamplighter of the first one.



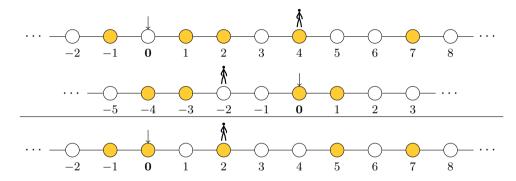
- Consider the first group element.
- Move the 0-lamp of the second element to the lamplighter of the first one.



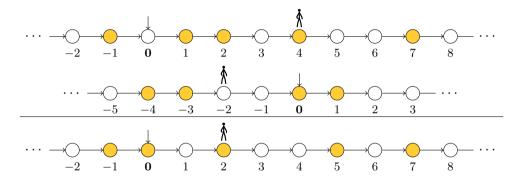
- Consider the first group element.
- Move the 0-lamp of the second element to the lamplighter of the first one.
- Pointwisely, perform an exclusive or.



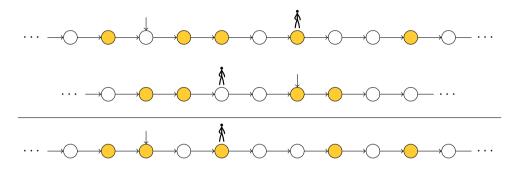
- Consider the first group element.
- Move the 0-lamp of the second element to the lamplighter of the first one.
- Pointwisely, perform an exclusive or.
- Use the position of the lamplighter in the second element.



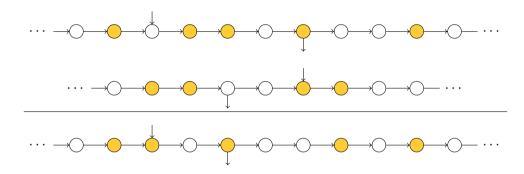
- Consider the first group element.
- Move the 0-lamp of the second element to the lamplighter of the first one.
- Pointwisely, perform an exclusive or.
- Use the position of the lamplighter in the second element.



- Consider the first group element.
- Move the 0-lamp of the second element to the lamplighter of the first one.
- Pointwisely, perform an exclusive or.
- Use the position of the lamplighter in the second element.



- Consider the first group element.
- Move the 0-lamp of the second element to the lamplighter of the first one.
- Pointwisely, perform an exclusive or.
- Use the position of the lamplighter in the second element.



- Consider the first group element.
- Move the 0-lamp of the second element to the lamplighter of the first one.
- Pointwisely, perform an exclusive or.
- Use the position of the lamplighter in the second element.

The lamplighter group is generated by the following two elements:



The lamplighter group is generated by the following two elements:

$$t = \dots \longrightarrow \cdots$$
"move the lamplighter"

The lamplighter group is generated by the following two elements:

$$t = \dots \longrightarrow \longrightarrow \dots$$
"move the lamplighter"

$$a = \dots \longrightarrow \longrightarrow \dots$$
"toggle the current lamp"

The lamplighter group is generated by the following two elements:

$$t = \dots \longrightarrow \cdots$$

"move the lamplighter"

$$a = \dots \longrightarrow \dots$$

"toggle the current lamp"

In fact:
$$L_2 = \langle a, t \mid a^2 = 1, [a, t^{\ell}at^{-\ell}] = 1, \ell \in \mathbb{Z} \rangle$$
.

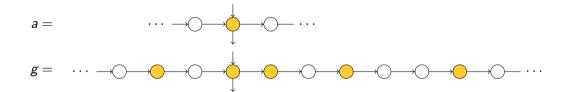
• Consider an element g with the lamplighter at 0.

$$g = \cdots \longrightarrow \cdots \longrightarrow \cdots \longrightarrow \cdots \longrightarrow \cdots$$

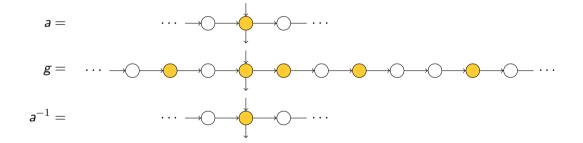
- Consider an element g with the lamplighter at 0.
- Conjugate it with a

$$g = \cdots \longrightarrow \cdots \longrightarrow \cdots \longrightarrow \cdots$$

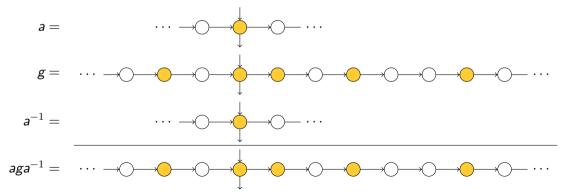
- Consider an element g with the lamplighter at 0.
- Conjugate it with a



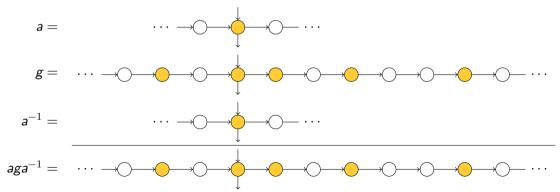
- Consider an element g with the lamplighter at 0.
- Conjugate it with a



- Consider an element g with the lamplighter at 0.
- Conjugate it with a



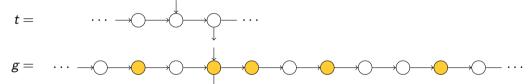
- Consider an element g with the lamplighter at 0.
- Conjugate it with $a \leftrightarrow \text{invariant}$



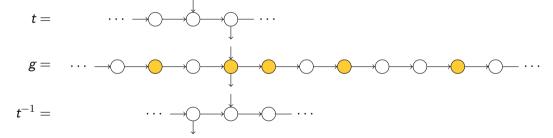
- Consider an element g with the lamplighter at 0.
- Conjugate it with a → invariant
- Conjugate it with t

$$g = \cdots \longrightarrow \cdots \longrightarrow \cdots \longrightarrow \cdots \longrightarrow \cdots$$

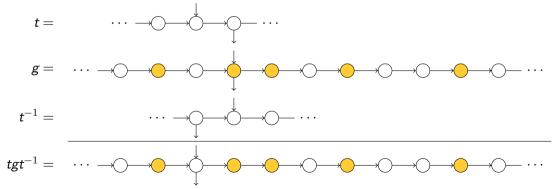
- Consider an element g with the lamplighter at 0.
- Conjugate it with *a* → invariant
- Conjugate it with t



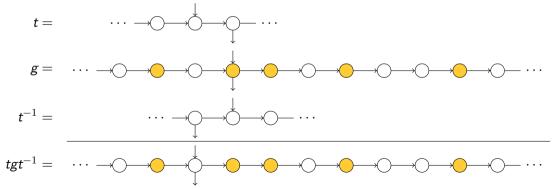
- Consider an element g with the lamplighter at 0.
- Conjugate it with $a \rightsquigarrow \text{invariant}$
- Conjugate it with t

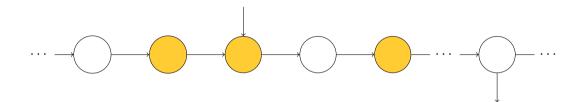


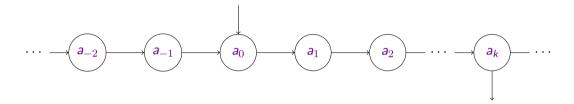
- Consider an element g with the lamplighter at 0.
- Conjugate it with *a* → invariant
- Conjugate it with t



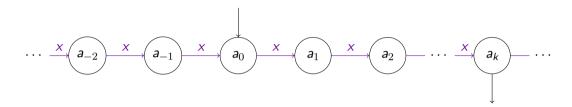
- Consider an element g with the lamplighter at 0.
- Conjugate it with a → invariant
- Conjugate it with $t \rightsquigarrow$ lamp configuration is translated



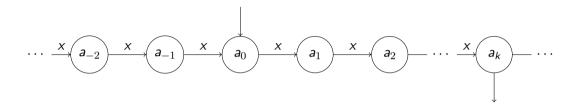




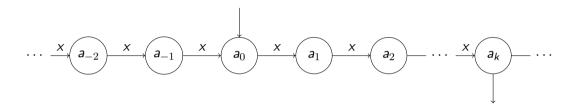
Instead of on/off values, we may use values a_i ∈ A.
 The pointwise product then is the product of A.



- Instead of on/off values, we may use values $a_i \in A$. The pointwise product then is the product of A.
- The underlying graph is the Cayley graph of $\mathbb{Z} = \langle x \rangle$

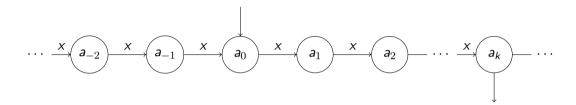


- Instead of on/off values, we may use values $a_i \in A$. The pointwise product then is the product of A.
- The underlying graph is the Cayley graph of $\mathbb{Z}=\langle x\rangle$ and we may replace it by the Cayley graph of B.



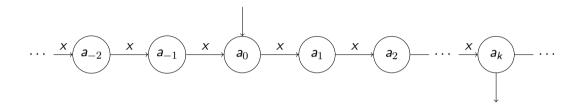
- Instead of on/off values, we may use values $a_i \in A$. The pointwise product then is the product of A.
- The underlying graph is the Cayley graph of $\mathbb{Z}=\langle x\rangle$ and we may replace it by the Cayley graph of B.

We obtain:



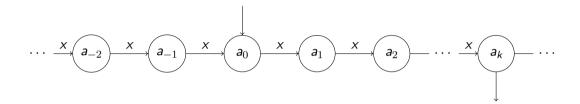
- Instead of on/off values, we may use values $a_i \in A$. The pointwise product then is the product of A.
- The underlying graph is the Cayley graph of $\mathbb{Z}=\langle x\rangle$ and we may replace it by the Cayley graph of B.

We obtain: functions $B \rightarrow A$ with finite support



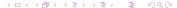
- Instead of on/off values, we may use values $a_i \in A$. The pointwise product then is the product of A.
- The underlying graph is the Cayley graph of $\mathbb{Z}=\langle x\rangle$ and we may replace it by the Cayley graph of B. $\operatorname{supp} f=\{b\in B\mid f(b)\neq 0\}$

We obtain: functions $B \rightarrow A$ with finite support



- Instead of on/off values, we may use values $a_i \in A$. The pointwise product then is the product of A.
- The underlying graph is the Cayley graph of $\mathbb{Z} = \langle x \rangle$ and we may replace it by the Cayley graph of B. $\sup f = \{b \in B \mid f(b) \neq 0\}$

We obtain: functions $B \rightarrow A$ with finite support and an element of B as the lamplighter position



Fact

A: abelian group of rank r

Fact

A: abelian group of rank $r = r_1 + r_2$

Then: $A = \prod_{i=1}^{r_1} \mathbb{Z}/m_i \mathbb{Z} \times \mathbb{Z}^{r_2}$

Fact

A: abelian group of rank $r = r_1 + r_2$

Then: $A = \prod_{i=1}^{r_1} \mathbb{Z}/m_i \mathbb{Z} \times \mathbb{Z}^{r_2}$ forms a commutative ring

where A is the additive group.

Fact

A: abelian group of rank $r = r_1 + r_2$

Then: $A = \prod_{i=1}^{r_1} \mathbb{Z}/m_i\mathbb{Z} \times \mathbb{Z}^{r_2}$ forms a commutative ring with

$$\mathbb{O}_{\mathcal{A}} = \left(0 + m_1 \mathbb{Z}, \dots, 0 + m_{r_1} \mathbb{Z}, \underbrace{0, \dots, 0}_{r_2 \text{ many}}\right)$$

where A is the additive group.

Fact

A: abelian group of rank $r = r_1 + r_2$

Then: $A = \prod_{i=1}^{r_1} \mathbb{Z}/m_i\mathbb{Z} \times \mathbb{Z}^{r_2}$ forms a commutative ring with

$$\mathbb{O}_{\mathcal{A}} = \left(0 + m_1 \mathbb{Z}, \dots, 0 + m_{r_1} \mathbb{Z}, \underbrace{0, \dots, 0}_{r_2 \ \textit{many}}\right)$$
 and

$$\mathbb{1}_{A} = \left(1 + m_1 \mathbb{Z}, \dots, 1 + m_{r_1} \mathbb{Z}, \underbrace{1, \dots, 1}_{r_2 \text{ many}},\right)$$

where A is the additive group.

Abelian Groups as Rings

Fact

A: abelian group of rank $r = r_1 + r_2$

Then: $A = \prod_{i=1}^{r_1} \mathbb{Z}/m_i\mathbb{Z} \times \mathbb{Z}^{r_2}$ forms a commutative ring with

$$\mathbb{O}_{\mathcal{A}} = \left(0 + m_1 \mathbb{Z}, \dots, 0 + m_{r_1} \mathbb{Z}, \underbrace{0, \dots, 0}_{r_2 \ \textit{many}} \right)$$
 and

$$\mathbb{1}_{A} = \left(1 + m_1 \mathbb{Z}, \dots, 1 + m_{r_1} \mathbb{Z}, \underbrace{1, \dots, 1}_{r_2 \text{ many}}\right)$$

where A is the additive group.

This allows us to define the ring of Laurent polynomials in multiple variables over A...

Definition (Laurent Polynomial)

Let $X = \{X_1, \dots, X_d\}$ be a set of polynomial variables.

Definition (Laurent Polynomial)

Let $X = \{X_1, \dots, X_d\}$ be a set of polynomial variables.

For
$$\mathbf{v} = (v_1, \dots, v_d) \in \mathbb{Z}^d$$
, write

$$X^{\mathbf{v}} = X_1^{\mathbf{v}_1} \dots X_d^{\mathbf{v}_d}$$
.

Definition (Laurent Polynomial)

Let $X = \{X_1, \dots, X_d\}$ be a set of polynomial variables.

For
$$\mathbf{v} = (v_1, \dots, v_d) \in \mathbb{Z}^d$$
, write

$$\mathbf{X}^{\mathbf{v}}=X_1^{\mathbf{v}_1}\ldots X_d^{\mathbf{v}_d}.$$

We let the X_i commute and get $X^uX^v = X^{u+v}$.

Definition (Laurent Polynomial)

Let $\mathbf{X} = \{X_1, \dots, X_d\}$ be a set of polynomial variables.

For
$$\mathbf{v} = (v_1, \dots, v_d) \in \mathbb{Z}^d$$
, write

$$\mathbf{X}^{\mathbf{v}} = X_1^{\mathbf{v}_1} \dots X_d^{\mathbf{v}_d}.$$

We let the X_i commute and get $X^uX^v = X^{u+v}$.

A Laurent polynomial over A in X is a formal sum

$$\sum_{oldsymbol{v}\in\mathbb{Z}^d} a_{oldsymbol{v}} oldsymbol{X}^{oldsymbol{v}} \quad ext{where} \qquad \qquad a_{oldsymbol{v}}\in \mathcal{A}$$

Definition (Laurent Polynomial)

Let $X = \{X_1, \dots, X_d\}$ be a set of polynomial variables.

For $\mathbf{v} = (v_1, \dots, v_d) \in \mathbb{Z}^d$, write

$$X^{\mathbf{v}} = X_1^{\mathbf{v}_1} \dots X_d^{\mathbf{v}_d}$$
.

We let the X_i commute and get $X^uX^v = X^{u+v}$.

A Laurent polynomial over A in X is a formal sum

$$\sum_{\mathbf{v} \in \mathbb{Z}^d} a_{\mathbf{v}} \mathbf{X}^{\mathbf{v}} \quad \text{ where almost all } a_{\mathbf{v}} \in A \text{ are } \mathbb{O}_A.$$

The set of all Laurent polynomials is $A[X^{\pm 1}]$.

Definition

The Laurent polynomials over A form the ring $A[X^{\pm 1}]$ with

Definition

The Laurent polynomials over A form the ring $A[\mathbf{X}^{\pm 1}]$ with

$$\Big(\sum_{\boldsymbol{\nu}\in\mathbb{Z}^d}a_{\boldsymbol{\nu}}\boldsymbol{X}^{\boldsymbol{\nu}}\Big)+\Big(\sum_{\boldsymbol{\nu}\in\mathbb{Z}^d}a'_{\boldsymbol{\nu}}\boldsymbol{X}^{\boldsymbol{\nu}}\Big)=\sum_{\boldsymbol{\nu}\in\mathbb{Z}^d}(a_{\boldsymbol{\nu}}+a'_{\boldsymbol{\nu}})\boldsymbol{X}^{\boldsymbol{\nu}}$$

Definition

The Laurent polynomials over A form the ring $A[X^{\pm 1}]$ with

$$\left(\sum_{\mathbf{v} \in \mathbb{Z}^d} a_{\mathbf{v}} \mathbf{X}^{\mathbf{v}} \right) + \left(\sum_{\mathbf{v} \in \mathbb{Z}^d} a'_{\mathbf{v}} \mathbf{X}^{\mathbf{v}} \right) = \sum_{\mathbf{v} \in \mathbb{Z}^d} (a_{\mathbf{v}} + a'_{\mathbf{v}}) \mathbf{X}^{\mathbf{v}} \quad \text{and}$$

$$\left(\sum_{\mathbf{u} \in \mathbb{Z}^d} a_{\mathbf{u}} \mathbf{X}^{\mathbf{u}} \right) \cdot \left(\sum_{\mathbf{v} \in \mathbb{Z}^d} a'_{\mathbf{v}} \mathbf{X}^{\mathbf{v}} \right) = \sum_{\mathbf{u} \in \mathbb{Z}^d} \left(\sum_{\mathbf{v} \in \mathbb{Z}^d} a_{\mathbf{u} - \mathbf{v}} a'_{\mathbf{v}} \right) \mathbf{X}^{\mathbf{u}}.$$

Definition

The Laurent polynomials over A form the ring $A[X^{\pm 1}]$ with

$$\left(\sum_{\boldsymbol{v} \in \mathbb{Z}^d} a_{\boldsymbol{v}} \boldsymbol{X}^{\boldsymbol{v}} \right) + \left(\sum_{\boldsymbol{v} \in \mathbb{Z}^d} a'_{\boldsymbol{v}} \boldsymbol{X}^{\boldsymbol{v}} \right) = \sum_{\boldsymbol{v} \in \mathbb{Z}^d} (a_{\boldsymbol{v}} + a'_{\boldsymbol{v}}) \boldsymbol{X}^{\boldsymbol{v}} \quad \text{and}$$

$$\left(\sum_{\boldsymbol{u} \in \mathbb{Z}^d} a_{\boldsymbol{u}} \boldsymbol{X}^{\boldsymbol{u}} \right) \cdot \left(\sum_{\boldsymbol{v} \in \mathbb{Z}^d} a'_{\boldsymbol{v}} \boldsymbol{X}^{\boldsymbol{v}} \right) = \sum_{\boldsymbol{u} \in \mathbb{Z}^d} \left(\sum_{\boldsymbol{v} \in \mathbb{Z}^d} a_{\boldsymbol{u} - \boldsymbol{v}} a'_{\boldsymbol{v}} \right) \boldsymbol{X}^{\boldsymbol{u}}.$$

We have

Definition

The Laurent polynomials over A form the ring $A[X^{\pm 1}]$ with

$$\left(\sum_{\mathbf{v}\in\mathbb{Z}^d} a_{\mathbf{v}} \mathbf{X}^{\mathbf{v}}\right) + \left(\sum_{\mathbf{v}\in\mathbb{Z}^d} a'_{\mathbf{v}} \mathbf{X}^{\mathbf{v}}\right) = \sum_{\mathbf{v}\in\mathbb{Z}^d} (a_{\mathbf{v}} + a'_{\mathbf{v}}) \mathbf{X}^{\mathbf{v}} \quad \text{and} \\
\left(\sum_{\mathbf{u}\in\mathbb{Z}^d} a_{\mathbf{u}} \mathbf{X}^{\mathbf{u}}\right) \cdot \left(\sum_{\mathbf{v}\in\mathbb{Z}^d} a'_{\mathbf{v}} \mathbf{X}^{\mathbf{v}}\right) = \sum_{\mathbf{u}\in\mathbb{Z}^d} \left(\sum_{\mathbf{v}\in\mathbb{Z}^d} a_{\mathbf{u}-\mathbf{v}} a'_{\mathbf{v}}\right) \mathbf{X}^{\mathbf{u}}.$$

We have

$$\mathbb{O} = \sum_{oldsymbol{b} \in \mathbb{Z}^d} \mathbb{O}_{\mathcal{A}} oldsymbol{X}^{oldsymbol{b}}$$

Definition

The Laurent polynomials over A form the ring $A[X^{\pm 1}]$ with

$$\left(\sum_{\mathbf{v}\in\mathbb{Z}^d} a_{\mathbf{v}} \mathbf{X}^{\mathbf{v}}\right) + \left(\sum_{\mathbf{v}\in\mathbb{Z}^d} a'_{\mathbf{v}} \mathbf{X}^{\mathbf{v}}\right) = \sum_{\mathbf{v}\in\mathbb{Z}^d} (a_{\mathbf{v}} + a'_{\mathbf{v}}) \mathbf{X}^{\mathbf{v}} \quad \text{and} \\
\left(\sum_{\mathbf{u}\in\mathbb{Z}^d} a_{\mathbf{u}} \mathbf{X}^{\mathbf{u}}\right) \cdot \left(\sum_{\mathbf{v}\in\mathbb{Z}^d} a'_{\mathbf{v}} \mathbf{X}^{\mathbf{v}}\right) = \sum_{\mathbf{u}\in\mathbb{Z}^d} \left(\sum_{\mathbf{v}\in\mathbb{Z}^d} a_{\mathbf{u}-\mathbf{v}} a'_{\mathbf{v}}\right) \mathbf{X}^{\mathbf{u}}.$$

We have

$$\mathbb{O} = \sum_{m{b} \in \mathbb{Z}^d} \mathbb{O}_A m{X}^{m{b}} \quad ext{and}$$
 $\mathbb{1} = \mathbb{1}_A m{X}^0.$

Definition

The Laurent polynomials over A form the ring $A[\mathbf{X}^{\pm 1}]$ with

$$\left(\sum_{\boldsymbol{v}\in\mathbb{Z}^d}a_{\boldsymbol{v}}\boldsymbol{X}^{\boldsymbol{v}}\right) + \left(\sum_{\boldsymbol{v}\in\mathbb{Z}^d}a'_{\boldsymbol{v}}\boldsymbol{X}^{\boldsymbol{v}}\right) = \sum_{\boldsymbol{v}\in\mathbb{Z}^d}(a_{\boldsymbol{v}} + a'_{\boldsymbol{v}})\boldsymbol{X}^{\boldsymbol{v}} \quad \text{and} \\
\left(\sum_{\boldsymbol{u}\in\mathbb{Z}^d}a_{\boldsymbol{u}}\boldsymbol{X}^{\boldsymbol{u}}\right) \cdot \left(\sum_{\boldsymbol{v}\in\mathbb{Z}^d}a'_{\boldsymbol{v}}\boldsymbol{X}^{\boldsymbol{v}}\right) = \sum_{\boldsymbol{u}\in\mathbb{Z}^d}\left(\sum_{\boldsymbol{v}\in\mathbb{Z}^d}a_{\boldsymbol{u}-\boldsymbol{v}}a'_{\boldsymbol{v}}\right)\boldsymbol{X}^{\boldsymbol{u}}.$$

We have

We write

$$\mathbb{O} = \sum_{m{b} \in \mathbb{Z}^d} \mathbb{O}_A m{X}^{m{b}}$$
 and $\mathbb{I} = \mathbb{1}_A m{X}^{m{0}}.$

Definition

The Laurent polynomials over A form the ring $A[X^{\pm 1}]$ with

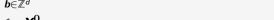
$$\left(\sum_{\boldsymbol{v}\in\mathbb{Z}^d}a_{\boldsymbol{v}}\boldsymbol{X}^{\boldsymbol{v}}\right) + \left(\sum_{\boldsymbol{v}\in\mathbb{Z}^d}a'_{\boldsymbol{v}}\boldsymbol{X}^{\boldsymbol{v}}\right) = \sum_{\boldsymbol{v}\in\mathbb{Z}^d}(a_{\boldsymbol{v}} + a'_{\boldsymbol{v}})\boldsymbol{X}^{\boldsymbol{v}} \quad \text{and} \\
\left(\sum_{\boldsymbol{u}\in\mathbb{Z}^d}a_{\boldsymbol{u}}\boldsymbol{X}^{\boldsymbol{u}}\right) \cdot \left(\sum_{\boldsymbol{v}\in\mathbb{Z}^d}a'_{\boldsymbol{v}}\boldsymbol{X}^{\boldsymbol{v}}\right) = \sum_{\boldsymbol{u}\in\mathbb{Z}^d}\left(\sum_{\boldsymbol{v}\in\mathbb{Z}^d}a_{\boldsymbol{u}-\boldsymbol{v}}a'_{\boldsymbol{v}}\right)\boldsymbol{X}^{\boldsymbol{u}}.$$

We have

$$\mathbb{O} = \sum_{m{b} \in \mathbb{Z}^d} \mathbb{O}_A m{X}^{m{b}}$$
 and $\mathbb{1} = \mathbb{1}_A m{X}^{m{0}}.$

We write

$$a = a X^0$$



Definition

The Laurent polynomials over A form the ring $A[X^{\pm 1}]$ with

$$\left(\sum_{\boldsymbol{v}\in\mathbb{Z}^d}a_{\boldsymbol{v}}\boldsymbol{X}^{\boldsymbol{v}}\right) + \left(\sum_{\boldsymbol{v}\in\mathbb{Z}^d}a'_{\boldsymbol{v}}\boldsymbol{X}^{\boldsymbol{v}}\right) = \sum_{\boldsymbol{v}\in\mathbb{Z}^d}(a_{\boldsymbol{v}} + a'_{\boldsymbol{v}})\boldsymbol{X}^{\boldsymbol{v}} \quad \text{and} \\
\left(\sum_{\boldsymbol{u}\in\mathbb{Z}^d}a_{\boldsymbol{u}}\boldsymbol{X}^{\boldsymbol{u}}\right) \cdot \left(\sum_{\boldsymbol{v}\in\mathbb{Z}^d}a'_{\boldsymbol{v}}\boldsymbol{X}^{\boldsymbol{v}}\right) = \sum_{\boldsymbol{u}\in\mathbb{Z}^d}\left(\sum_{\boldsymbol{v}\in\mathbb{Z}^d}a_{\boldsymbol{u}-\boldsymbol{v}}a'_{\boldsymbol{v}}\right)\boldsymbol{X}^{\boldsymbol{u}}.$$

We have

$$\mathbb{O} = \sum_{m{b} \in \mathbb{Z}^d} \mathbb{O}_A m{X}^{m{b}}$$
 and

$$\mathbb{1}=\mathbb{1}_{\mathcal{A}}\,\textbf{\textit{X}}^{0}.$$

We write

$$a = a X^0$$
 and $X_i = \mathbb{1}_A X_i^1$.

• Let $A^{(\mathbb{Z}^d)}$ the set of functions $\mathbb{Z}^d \to A$ with finite support.

- Let $A^{(\mathbb{Z}^d)}$ the set of functions $\mathbb{Z}^d \to A$ with finite support.
- We turn $A^{(\mathbb{Z}^d)}$ into an abelian group using pointwise sum.

- Let $A^{(\mathbb{Z}^d)}$ the set of functions $\mathbb{Z}^d \to A$ with finite support.
- We turn $A^{(\mathbb{Z}^d)}$ into an abelian group using pointwise sum.

Fact

There is a natural additive group isomorphism

$$A^{(\mathbb{Z}^d)} o A[extbf{ extit{X}}^{\pm 1}]$$

- Let $A^{(\mathbb{Z}^d)}$ the set of functions $\mathbb{Z}^d \to A$ with finite support.
- We turn $A^{(\mathbb{Z}^d)}$ into an abelian group using pointwise sum.

Fact

There is a natural additive group isomorphism

$$A^{(\mathbb{Z}^d)} o A[\mathbf{X}^{\pm 1}]$$
 $f \mapsto \sum_{\mathbf{v} \in \mathbb{Z}^d} f(\mathbf{v}) \mathbf{X}^{\mathbf{v}}.$

Definition

A lattice is a finitely generated additive subgroup of \mathbb{Z}^d

Definition

A lattice is a finitely generated additive subgroup of \mathbb{Z}^d

Note: We may write any abelian group B of rank d as $B = \mathbb{Z}^d/L$ for some lattice L.

Definition

A lattice is a finitely generated additive subgroup of \mathbb{Z}^d

Note: We may write any abelian group B of rank d as $B = \mathbb{Z}^d/L$ for some lattice L.

Definition

Every lattice L generates an ideal $\mathscr{I}(L) = \langle \mathbf{X}^{\ell} - \mathbb{1} \quad | \quad \ell \quad \in L \rangle \subseteq A[\mathbf{X}^{\pm 1}].$

Definition

lattice is a finitely generated additive subgroup of \mathbb{Z}^d

Note: We may write any abelian group B of rank d as $B = \mathbb{Z}^d/L$ for some lattice L.

Definition

Everv

lattice L generates an ideal $\mathscr{I}(L) = \langle \mathbf{X}^{\ell} - \mathbb{1} | \ell \in L \rangle \subseteq A[\mathbf{X}^{\pm 1}].$

Theorem

Let
$$L = \langle \ell_1, \ldots, \ell_n \rangle \subseteq \mathbb{Z}^d$$

$$\rangle \subseteq \mathbb{Z}^d$$

Definition

lattice is a finitely generated additive subgroup of \mathbb{Z}^d

Note: We may write any abelian group B of rank d as $B = \mathbb{Z}^d/L$ for some lattice L.

Definition

Everv

lattice L generates an ideal $\mathscr{I}(L) = \langle \mathbf{X}^{\ell} - \mathbb{1} \rangle$

 $\mid \ell \in L \rangle \subseteq A[X^{\pm 1}].$

Theorem

Let
$$L = \langle \ell_1, \ldots, \ell_n \rangle \subseteq \mathbb{Z}^d$$

Then: $\mathscr{I}(L) = \langle \mathbf{X}^{\ell_1} - \mathbb{1}, \ldots, \mathbf{X}^{\ell_n} - \mathbb{1} \rangle \subseteq A[\mathbf{X}^{\pm 1}]$

Definition

lattice is a finitely generated additive subgroup of \mathbb{Z}^d Α

Note: We may write any abelian group B of rank d as $B = \mathbb{Z}^d/L$ for some lattice L.

Definition

Everv

lattice L generates an ideal $\mathscr{I}(L) = \langle \mathbf{X}^{\ell} - \mathbb{1} | \ell \in L \rangle \subset A[\mathbf{X}^{\pm 1}].$

Theorem

Let
$$L = \langle \ell_1, \ldots, \ell_n \rangle \subseteq \mathbb{Z}^d$$

Then: $\mathscr{I}(L) = \langle \mathbf{X}^{\ell_1} - \mathbb{1}, \ldots, \mathbf{X}^{\ell_n} - \mathbb{1} \rangle \subseteq A[\mathbf{X}^{\pm 1}]$

"The generating set suffices to obtain the entire ideal."

Definition

An extended lattice is a finitely generated additive subgroup of $\mathbb{Z}^d \times \mathbb{Z}/2\mathbb{Z}$

Note: We may write any abelian group B of rank d as $B = \mathbb{Z}^d/L$ for some lattice L.

Definition

Everv

lattice L generates an ideal $\mathscr{I}(L) = \langle \mathbf{X}^{\ell} - \mathbb{1} | \ell \in L \rangle \subset A[\mathbf{X}^{\pm 1}].$

Theorem

Let
$$L = \langle \ell_1, \ldots, \ell_n \rangle \subseteq \mathbb{Z}^d$$

Then: $\mathscr{I}(L) = \langle \mathbf{X}^{\ell_1} - \mathbb{1}, \ldots, \mathbf{X}^{\ell_n} - \mathbb{1} \rangle \subseteq A[\mathbf{X}^{\pm 1}]$

"The generating set suffices to obtain the entire ideal."

Definition

An extended lattice is a finitely generated additive subgroup of $\mathbb{Z}^d \times \mathbb{Z}/2\mathbb{Z}$

Note: We may write any abelian group B of rank d as $B = \mathbb{Z}^d/L$ for some lattice L.

Definition

Every extended lattice \hat{L} generates an ideal $\mathscr{I}(L) = \langle \mathbf{X}^{\ell} - (-1)^{\sigma} \mid (\ell, \sigma) \in \hat{L} \rangle \subseteq A[\mathbf{X}^{\pm 1}].$

Theorem

Let
$$L = \langle \ell_1, \ldots, \ell_n \rangle \subseteq \mathbb{Z}^d$$

Then: $\mathscr{I}(L) = \langle \mathbf{X}^{\ell_1} - \mathbb{1}, \ldots, \mathbf{X}^{\ell_n} - \mathbb{1} \rangle \subseteq A[\mathbf{X}^{\pm 1}]$

"The generating set suffices to obtain the entire ideal."

22 / 34

Definition

An extended lattice is a finitely generated additive subgroup of $\mathbb{Z}^d \times \mathbb{Z}/2\mathbb{Z}$

Note: We may write any abelian group B of rank d as $B = \mathbb{Z}^d/L$ for some lattice L.

Definition

Every extended lattice \hat{L} generates an ideal $\mathscr{I}(L) = \langle \mathbf{X}^{\ell} - (-1)^{\sigma} \mid (\ell, \sigma) \in \hat{L} \rangle \subseteq A[\mathbf{X}^{\pm 1}].$

Theorem

Let
$$L = \langle (\ell_1, \sigma_1), \dots, (\ell_n, \sigma_n) \rangle \subseteq \mathbb{Z}^d \times \mathbb{Z}/2\mathbb{Z}$$

Then: $\mathscr{I}(L) = \langle \mathbf{X}^{\ell_1} - (-1)^{\sigma_1}, \dots, \mathbf{X}^{\ell_n} - (-1)^{\sigma_n} \rangle \subseteq A[\mathbf{X}^{\pm 1}]$

"The generating set suffices to obtain the entire ideal."

Of course: We may view a lattice as an extended lattice!

Definition

An extended lattice is a finitely generated additive subgroup of $\mathbb{Z}^d \times \mathbb{Z}/2\mathbb{Z}$

Note: We may write any abelian group B of rank d as $B = \mathbb{Z}^d/L$ for some lattice L.

Definition

Every extended lattice \hat{L} generates an ideal $\mathscr{I}(L) = \langle \mathbf{X}^{\ell} - (-1)^{\sigma} \mid (\ell, \sigma) \in \hat{L} \rangle \subseteq A[\mathbf{X}^{\pm 1}].$

Theorem

Let
$$L = \langle (\ell_1, \sigma_1), \dots, (\ell_n, \sigma_n) \rangle \subseteq \mathbb{Z}^d \times \mathbb{Z}/2\mathbb{Z}$$

Then: $\mathscr{I}(L) = \langle \mathbf{X}^{\ell_1} - (-1)^{\sigma_1}, \dots, \mathbf{X}^{\ell_n} - (-1)^{\sigma_n} \rangle \subseteq A[\mathbf{X}^{\pm 1}]$

"The generating set suffices to obtain the entire ideal."

```
The additive group \mathbb{Z}^d acts on A[\mathbf{X}^{\pm 1}] : by \mathbf{X}^{\mathbf{v}}f
```


$$\begin{array}{c} \text{Recall: } \mathscr{I}(L) = \langle \textbf{\textit{X}}^\ell = \mathbb{1} \mid \ell \in L \rangle \\ \text{The additive group } \mathbb{Z}^d/L = B \text{ acts on } A[\textbf{\textit{X}}^{\pm 1}]/\mathscr{I}(L) \text{:} \\ \textbf{\textit{v}} + L \in \mathbb{Z}^d/L \text{ acts on } f + \mathscr{I}(L) \in A[\textbf{\textit{X}}^{\pm 1}]/\mathscr{I}(L) \text{ by } \textbf{\textit{X}}^{\text{v}}f + \mathscr{I}(L) \\ \end{array}$$

The additive group $\mathbb{Z}^d/L = B$ acts on $A[\mathbf{X}^{\pm 1}]/\mathscr{I}(L)$:

Recall:
$$\mathscr{I}(L) = \langle \mathbf{X}^{\ell} = \mathbb{1} \mid \ell \in L \rangle$$
 additive group $\mathbb{Z}^d/L = B$ acts on $A[\mathbf{X}^{\pm 1}]/\mathscr{I}(L)$: $\mathbf{v} + L \in \mathbb{Z}^d/L$ acts on $f + \mathscr{I}(L) \in A[\mathbf{X}^{\pm 1}]/\mathscr{I}(L)$ by $\mathbf{X}^{\mathbf{v}}f + \mathscr{I}(L)$

This is well-defined:

Recall:
$$\mathscr{I}(L) = \langle \mathbf{X}^{\ell} = 1 \mid \ell \in L \rangle$$

This is well-defined: Consider a different representative $\mathbf{v} + \ell$.

 $\mathbf{v} + L \in \mathbb{Z}^d/L$ acts on $f + \mathcal{I}(L) \in A[\mathbf{X}^{\pm 1}]/\mathcal{I}(L)$ by $\mathbf{X}^{\mathbf{v}}f + \mathcal{I}(L)$

The additive group $\mathbb{Z}^d/L = B$ acts on $A[\mathbf{X}^{\pm 1}]/\mathscr{I}(L)$:

Recall:
$$\mathscr{I}(L) = \langle \mathbf{X}^{\ell} = 1 \mid \ell \in L \rangle$$

The additive group $\mathbb{Z}^d/L = B$ acts on $A[\mathbf{X}^{\pm 1}]/\mathscr{I}(L)$: $\mathbf{v} + L \in \mathbb{Z}^d/L$ acts on $f + \mathscr{I}(L) \in A[\mathbf{X}^{\pm 1}]/\mathscr{I}(L)$ by $\mathbf{X}^{\mathbf{v}}f + \mathscr{I}(L)$

This is well-defined: Consider a different representative $\mathbf{v} + \ell$. We have:

$$X^{v+\ell}f$$

Recall:
$$\mathscr{I}(L) = \langle \mathbf{X}^{\ell} = 1 \mid \ell \in L \rangle$$

The additive group $\mathbb{Z}^d/L = B$ acts on $A[\mathbf{X}^{\pm 1}]/\mathscr{I}(L)$: $\mathbf{v} + L \in \mathbb{Z}^d/L$ acts on $f + \mathscr{I}(L) \in A[\mathbf{X}^{\pm 1}]/\mathscr{I}(L)$ by $\mathbf{X}^{\mathbf{v}}f + \mathscr{I}(L)$

This is well-defined: Consider a different representative $\mathbf{v} + \ell$. We have:

$$\mathbf{X}^{\mathbf{v}+\ell}f = \mathbf{X}^{\mathbf{v}} \mathbf{X}^{\ell} f$$

Acting on Laurent Polynomials

Recall:
$$\mathscr{I}(L) = \langle \mathbf{X}^{\ell} = 1 \mid \ell \in L \rangle$$

The additive group $\mathbb{Z}^d/L = B$ acts on $A[\mathbf{X}^{\pm 1}]/\mathscr{I}(L)$: $\mathbf{v} + L \in \mathbb{Z}^d/L$ acts on $f + \mathscr{I}(L) \in A[\mathbf{X}^{\pm 1}]/\mathscr{I}(L)$ by $\mathbf{X}^{\mathbf{v}}f + \mathscr{I}(L)$

This is well-defined: Consider a different representative $\mathbf{v} + \ell$. We have:

$$\mathbf{X}^{\mathbf{v}+\boldsymbol{\ell}}f = \mathbf{X}^{\mathbf{v}}\underbrace{\mathbf{X}^{\boldsymbol{\ell}}}_{\mathbf{I}}f$$
 in $A[\mathbf{X}^{\pm 1}]/\mathscr{I}(L)$

Acting on Laurent Polynomials

Recall:
$$\mathscr{I}(L) = \langle \mathbf{X}^{\ell} = 1 \mid \ell \in L \rangle$$

The additive group $\mathbb{Z}^d/L = B$ acts on $A[\mathbf{X}^{\pm 1}]/\mathscr{I}(L)$: $\mathbf{v} + L \in \mathbb{Z}^d/L$ acts on $f + \mathscr{I}(L) \in A[\mathbf{X}^{\pm 1}]/\mathscr{I}(L)$ by $\mathbf{X}^{\mathbf{v}}f + \mathscr{I}(L)$

This is well-defined: Consider a different representative $\mathbf{v} + \ell$. We have:

$$\mathbf{X}^{\mathbf{v}+\boldsymbol{\ell}}f = \mathbf{X}^{\mathbf{v}}\underbrace{\mathbf{X}^{\boldsymbol{\ell}}}_{\text{all}}f = \mathbf{X}^{\mathbf{v}}f \quad \text{in } A[\mathbf{X}^{\pm 1}]/\mathscr{I}(L)$$

Now:
$$B = \mathbb{Z}^d/L$$
 acts on $A[\mathbf{X}^{\pm 1}]/I$ for $I = \mathscr{I}(L)$ as a group

Now:
$$B = \mathbb{Z}^d/L$$
 acts on $A[\mathbf{X}^{\pm 1}]/I$ for $I = \mathscr{I}(L)$ as a group and we may define

$$A[\mathbf{X}^{\pm 1}]/I \rtimes \mathbb{Z}^d/L$$

Now: $B = \mathbb{Z}^d/L$ acts on $A[\mathbf{X}^{\pm 1}]/I$ for $I = \mathscr{I}(L)$ as a group and we may define

$$A[\mathbf{X}^{\pm 1}]/I \times \mathbb{Z}^d/L$$
 via $(f+I, \mathbf{b}+L) \cdot (g+I, \mathbf{c}+L) = (f+\mathbf{X}^{\mathbf{b}} \cdot g+I, \mathbf{b}+\mathbf{c}+L).$

Now: $B = \mathbb{Z}^d/L$ acts on $A[\mathbf{X}^{\pm 1}]/I$ for $I = \mathscr{I}(L)$ as a group and we may define

$$A[\mathbf{X}^{\pm 1}]/I \rtimes \mathbb{Z}^d/L \text{ via } (f+I, \mathbf{b}+L) \cdot (g+I, \mathbf{c}+L) = (f+\mathbf{X}^{\mathbf{b}} \cdot g+I, \mathbf{b}+\mathbf{c}+L).$$

Fact

$$A \wr B \simeq A[\mathbf{X}^{\pm 1}]/I \rtimes \mathbb{Z}^d/L$$

Now: $B = \mathbb{Z}^d/L$ acts on $A[\mathbf{X}^{\pm 1}]/I$ for $I = \mathscr{I}(L)$ as a group and we may define

$$A[\mathbf{X}^{\pm 1}]/I \rtimes \mathbb{Z}^d/L \text{ via } (f+I,\mathbf{b}+L) \cdot (g+I,\mathbf{c}+L) = (f+\mathbf{X}^{\mathbf{b}} \cdot g+I,\mathbf{b}+\mathbf{c}+L).$$

Fact

$$A \wr B \simeq A[\mathbf{X}^{\pm 1}]/I \rtimes \mathbb{Z}^d/L$$

Idea:

Now: $B = \mathbb{Z}^d/L$ acts on $A[\mathbf{X}^{\pm 1}]/I$ for $I = \mathscr{I}(L)$ as a group and we may define

$$A[\mathbf{X}^{\pm 1}]/I \rtimes \mathbb{Z}^d/L \text{ via } (f+I,\mathbf{b}+L) \cdot (g+I,\mathbf{c}+L) = (f+\mathbf{X}^{\mathbf{b}} \cdot g+I,\mathbf{b}+\mathbf{c}+L).$$

Fact

$$A \wr B \simeq A[\mathbf{X}^{\pm 1}]/I \rtimes \mathbb{Z}^d/L$$

Idea:

• f and g are lamp configurations.

Now: $B = \mathbb{Z}^d/L$ acts on $A[\mathbf{X}^{\pm 1}]/I$ for $I = \mathscr{I}(L)$ as a group and we may define

$$A[\mathbf{X}^{\pm 1}]/I \rtimes \mathbb{Z}^d/L \text{ via } (f+I,\mathbf{b}+L) \cdot (g+I,\mathbf{c}+L) = (f+\mathbf{X}^{\mathbf{b}} \cdot g+I,\mathbf{b}+\mathbf{c}+L).$$

Fact

$$A \wr B \simeq A[\mathbf{X}^{\pm 1}]/I \rtimes \mathbb{Z}^d/L$$

Idea:

- f and g are lamp configurations.
- **b** and **c** mark the position of the lamplighter.

Now: $B = \mathbb{Z}^d/L$ acts on $A[\mathbf{X}^{\pm 1}]/I$ for $I = \mathscr{I}(L)$ as a group and we may define

$$A[\mathbf{X}^{\pm 1}]/I \rtimes \mathbb{Z}^d/L \text{ via } (f+I,\mathbf{b}+L) \cdot (g+I,\mathbf{c}+L) = (f+\mathbf{X}^{\mathbf{b}} \cdot g+I,\mathbf{b}+\mathbf{c}+L).$$

Fact

$$A \wr B \simeq A[\mathbf{X}^{\pm 1}]/I \rtimes \mathbb{Z}^d/L$$

Idea:

- f and g are lamp configurations.
- **b** and **c** mark the position of the lamplighter.
- Note: g gets shifted by Xb.

Solving Nonorientable Equations

$$\prod^{S} Y_s^2 \prod^{K} Z_k(g_k, \boldsymbol{m}_k) Z_k^{-1} = 1$$

$$g_k \in A^{(B)}$$
 , $\operatorname{supp} g_k \subseteq [-D,D]^d$, $m{m}_k \in \mathbb{Z}^d$ has a solution in $A \wr B$

$$g_k \in A[\boldsymbol{X}^{\pm 1}], \text{ supp } g_k \subseteq [-D, D]^d, \quad \boldsymbol{m}_k \in \mathbb{Z}^d$$

$$\prod^S Y_s^2 \prod^K Z_k(g_k, \boldsymbol{m}_k) Z_k^{-1} = (0, \boldsymbol{0}) \text{ has a solution in } A[\boldsymbol{X}^{\pm 1}] / \langle \boldsymbol{X}^L = 1 \rangle \rtimes \mathbb{Z}^d / L$$

$$g_k \in A[\mathbf{X}^{\pm 1}], \text{ supp } g_k \subseteq [-D, D]^d, \quad \mathbf{m}_k \in \mathbb{Z}^d$$

$$\prod Y_s^2 \prod Z_k(g_k, \mathbf{m}_k) Z_k^{-1} = (\mathbb{O}, \mathbf{0}) \text{ has a solution in } A[\mathbf{X}^{\pm 1}] / \langle \mathbf{X}^L = \mathbb{1} \rangle \rtimes \mathbb{Z}^d / L$$

$$g_k \in A[\mathbf{X}^{\pm 1}], \operatorname{supp} g_k \subseteq [-D, D]^d, \quad \mathbf{m}_k \in \mathbb{Z}^d$$

$$\prod_{k=1}^{K} Y_k^2 \prod_{k=1}^{K} Z_k(g_k, \mathbf{m}_k) Z_k^{-1} = (0, \mathbf{0}) \text{ has a solution in } A[\mathbf{X}^{\pm 1}] / \langle \mathbf{X}^L = 1 \rangle \rtimes \mathbb{Z}^d / L$$

Lemma (Magic Lemma 1)

 $I \supseteq \mathscr{I}(L)$: ideal of $A[X^{\pm 1}]$

$$g_k \in A[\mathbf{X}^{\pm 1}], \operatorname{supp} g_k \subseteq [-D, D]^d, \quad \mathbf{m}_k \in \mathbb{Z}^d$$

$$\prod_{k=1}^{K} Y_k^2 \prod_{k=1}^{K} Z_k(g_k, \mathbf{m}_k) Z_k^{-1} = (0, \mathbf{0}) \text{ has a solution in } A[\mathbf{X}^{\pm 1}] / \langle \mathbf{X}^L = 1 \rangle \rtimes \mathbb{Z}^d / L$$

$$I \supseteq \mathscr{I}(L)$$
: ideal of $A[X^{\pm 1}]$, $w \in (A \wr B) \star F(X \setminus \{Y\})$

$$g_k \in A[\mathbf{X}^{\pm 1}], \operatorname{supp} g_k \subseteq [-D, D]^d, \quad \mathbf{m}_k \in \mathbb{Z}^d$$

$$\prod_{k=1}^{K} Y_k^2 \prod_{k=1}^{K} Z_k(g_k, \mathbf{m}_k) Z_k^{-1} = (0, \mathbf{0}) \text{ has a solution in } A[\mathbf{X}^{\pm 1}] / \langle \mathbf{X}^L = 1 \rangle \rtimes \mathbb{Z}^d / L$$

$$I \supseteq \mathscr{I}(L)$$
: ideal of $A[X^{\pm 1}]$, $w \in (A \wr B) \star F(X \setminus \{Y\})$

Then:
$$Y^2w = (0, 0)$$
 has a solution in $A[X^{\pm 1}]/I \rtimes \mathbb{Z}^d/L$

$$g_k \in A[\mathbf{X}^{\pm 1}], \text{ supp } g_k \subseteq [-D, D]^d, \quad \mathbf{m}_k \in \mathbb{Z}^d$$

$$\prod_{s=1}^S Y_s^2 \prod_{k=1}^K Z_k(g_k, \mathbf{m}_k) Z_k^{-1} = (\mathbb{O}, \mathbf{0}) \text{ has a solution in } A[\mathbf{X}^{\pm 1}] / \langle \mathbf{X}^L = \mathbb{1} \rangle \rtimes \mathbb{Z}^d / L$$

$$I \supseteq \mathscr{I}(L)$$
: ideal of $A[X^{\pm 1}]$, $w \in (A \wr B) \star F(X \setminus \{Y\})$

$$Y^2w = (0, \mathbf{0})$$
 has a solution in $A[\mathbf{X}^{\pm 1}]/I \rtimes \mathbb{Z}^d/L$

$$\iff \exists \mathbf{n} \in \mathbb{Z}^d: \quad \mathbf{w} = (0, 2\mathbf{n}) \text{ has a solution in } A[\mathbf{X}^{\pm 1}]/\langle \mathbf{I}, \mathbf{X}^{\mathbf{n}} + \mathbb{1} \rangle \rtimes \mathbb{Z}^d/L$$

$$g_k \in A[\boldsymbol{X}^{\pm 1}], \text{ supp } g_k \subseteq [-D, D]^d, \quad \boldsymbol{m}_k \in \mathbb{Z}^d$$

$$\prod_{s=1}^S Y_s^2 \prod_{k=1}^K Z_k(g_k, \boldsymbol{m}_k) Z_k^{-1} = (0, \boldsymbol{0}) \text{ has a solution in } A[\boldsymbol{X}^{\pm 1}] / \langle \boldsymbol{X}^L = 1 \rangle \rtimes \mathbb{Z}^d / L$$

Lemma (Magic Lemma 1)

$$I \supseteq \mathscr{I}(L)$$
: ideal of $A[\mathbf{X}^{\pm 1}]$, $w \in (A \wr B) \star F(\mathbb{X} \setminus \{Y\})$

Then:
$$Y^2w = (0, \mathbf{0})$$
 has a solution in $A[\mathbf{X}^{\pm 1}]/I \rtimes \mathbb{Z}^d/L$

$$\iff \exists n \in \mathbb{Z}^d: \quad w = (0, 2n) \text{ has a solution in } A[\mathbf{X}^{\pm 1}]/\langle \mathbf{I}, \mathbf{X}^n + \mathbb{1}\rangle \rtimes \mathbb{Z}^d/L$$

Idea:

$$g_k \in A[\mathbf{X}^{\pm 1}], \operatorname{supp} g_k \subseteq [-D, D]^d, \quad \mathbf{m}_k \in \mathbb{Z}^d$$

$$\prod_{s=1}^S Y_s^2 \prod_{k=1}^K Z_k(g_k, \mathbf{m}_k) Z_k^{-1} = (\mathbb{0}, \mathbf{0}) \text{ has a solution in } A[\mathbf{X}^{\pm 1}] / \langle \mathbf{X}^L = \mathbb{1} \rangle \rtimes \mathbb{Z}^d / L$$

Lemma (Magic Lemma 1)

$$I \supseteq \mathscr{I}(L)$$
: ideal of $A[X^{\pm 1}]$, $w \in (A \wr B) \star F(X \setminus \{Y\})$

Then:
$$Y^2w = (0, \mathbf{0})$$
 has a solution in $A[\mathbf{X}^{\pm 1}]/I \rtimes \mathbb{Z}^d/L$

$$\iff \exists n \in \mathbb{Z}^d: \quad w = (0, 2n) \text{ has a solution in } A[\mathbf{X}^{\pm 1}]/\langle \mathbf{I}, \mathbf{X}^n + \mathbb{1}\rangle \rtimes \mathbb{Z}^d/L$$

Idea: $(f, \mathbf{n})^2$

$$g_k \in A[\boldsymbol{X}^{\pm 1}], \text{ supp } g_k \subseteq [-D, D]^d, \quad \boldsymbol{m}_k \in \mathbb{Z}^d$$

$$\prod_{s=1}^S Y_s^2 \prod_{k=1}^K Z_k(g_k, \boldsymbol{m}_k) Z_k^{-1} = (0, \boldsymbol{0}) \text{ has a solution in } A[\boldsymbol{X}^{\pm 1}] / \langle \boldsymbol{X}^L = 1 \rangle \rtimes \mathbb{Z}^d / L$$

$$I \supseteq \mathscr{I}(L)$$
: ideal of $A[X^{\pm 1}]$, $w \in (A \wr B) \star F(X \setminus \{Y\})$

Then:
$$Y^2w = (0, \mathbf{0})$$
 has a solution in $A[\mathbf{X}^{\pm 1}]/I \rtimes \mathbb{Z}^d/L$

$$\iff \exists \mathbf{n} \in \mathbb{Z}^d: \quad \mathbf{w} = (\mathbb{O}, 2\mathbf{n}) \text{ has a solution in } A[\mathbf{X}^{\pm 1}]/\langle \mathbf{I}, \mathbf{X}^{\mathbf{n}} + \mathbb{1} \rangle \rtimes \mathbb{Z}^d/L$$

Idea:
$$(f, n)^2 = (f, n) (f, n)$$

$$g_k \in A[\boldsymbol{X}^{\pm 1}], \text{ supp } g_k \subseteq [-D, D]^d, \quad \boldsymbol{m}_k \in \mathbb{Z}^d$$

$$\prod_{s=1}^S Y_s^2 \prod_{k=1}^K Z_k(g_k, \boldsymbol{m}_k) Z_k^{-1} = (0, \boldsymbol{0}) \text{ has a solution in } A[\boldsymbol{X}^{\pm 1}] / \langle \boldsymbol{X}^L = 1 \rangle \rtimes \mathbb{Z}^d / L$$

$$I \supseteq \mathscr{I}(L)$$
: ideal of $A[X^{\pm 1}]$, $w \in (A \wr B) \star F(X \setminus \{Y\})$

Then:
$$Y^2w = (0, \mathbf{0})$$
 has a solution in $A[\mathbf{X}^{\pm 1}]/I \rtimes \mathbb{Z}^d/L$

$$\iff \exists n \in \mathbb{Z}^d: \quad w = (0, 2n) \text{ has a solution in } A[\mathbf{X}^{\pm 1}]/\langle I, \mathbf{X}^n + 1 \rangle \rtimes \mathbb{Z}^d/L$$

Idea:
$$(f, \mathbf{n})^2 = (f, \mathbf{n}) (f, \mathbf{n}) = ($$
, $2\mathbf{n})$

$$g_k \in A[\mathbf{X}^{\pm 1}], \operatorname{supp} g_k \subseteq [-D, D]^d, \quad \mathbf{m}_k \in \mathbb{Z}^d$$

$$\prod_{s=1}^S Y_s^2 \prod_{k=1}^K Z_k(g_k, \mathbf{m}_k) Z_k^{-1} = (\mathbb{0}, \mathbf{0}) \text{ has a solution in } A[\mathbf{X}^{\pm 1}] / \langle \mathbf{X}^L = \mathbb{1} \rangle \rtimes \mathbb{Z}^d / L$$

$$I \supseteq \mathscr{I}(L)$$
: ideal of $A[X^{\pm 1}]$, $w \in (A \wr B) \star F(X \setminus \{Y\})$

Then:
$$Y^2w = (0, \mathbf{0})$$
 has a solution in $A[\mathbf{X}^{\pm 1}]/I \rtimes \mathbb{Z}^d/L$

$$\iff \exists n \in \mathbb{Z}^d: \quad w = (0, 2n) \text{ has a solution in } A[\mathbf{X}^{\pm 1}]/\langle \mathbf{I}, \mathbf{X}^n + \mathbb{1}\rangle \rtimes \mathbb{Z}^d/L$$

Idea:
$$(f, \mathbf{n})^2 = (f, \mathbf{n}) (f, \mathbf{n}) = (f + \mathbf{X}^n f, 2\mathbf{n})$$

$$g_k \in A[\boldsymbol{X}^{\pm 1}], \text{ supp } g_k \subseteq [-D, D]^d, \quad \boldsymbol{m}_k \in \mathbb{Z}^d$$

$$\prod_{s=1}^S Y_s^2 \prod_{k=1}^K Z_k(g_k, \boldsymbol{m}_k) Z_k^{-1} = (0, \boldsymbol{0}) \text{ has a solution in } A[\boldsymbol{X}^{\pm 1}] / \langle \boldsymbol{X}^L = 1 \rangle \rtimes \mathbb{Z}^d / L$$

$$I \supseteq \mathscr{I}(L)$$
: ideal of $A[\mathbf{X}^{\pm 1}]$, $w \in (A \wr B) \star F(\mathbb{X} \setminus \{Y\})$

Then:
$$Y^2w = (0, \mathbf{0})$$
 has a solution in $A[\mathbf{X}^{\pm 1}]/I \rtimes \mathbb{Z}^d/L$

$$\iff \exists \mathbf{n} \in \mathbb{Z}^d: \quad \mathbf{w} = (\mathbb{O}, 2\mathbf{n}) \text{ has a solution in } A[\mathbf{X}^{\pm 1}]/\langle \mathbf{I}, \mathbf{X}^{\mathbf{n}} + \mathbb{1} \rangle \rtimes \mathbb{Z}^d/L$$

Idea:
$$(f, \mathbf{n})^2 = (f, \mathbf{n}) (f, \mathbf{n}) = (f + \mathbf{X}^n f, 2\mathbf{n}) = (f(1 + \mathbf{X}^n), 2\mathbf{n})$$

$$\begin{split} & \qquad \qquad g_k \in A[\boldsymbol{X}^{\pm 1}], \ \operatorname{supp} g_k \subseteq [-D,D]^d, \quad \boldsymbol{m}_k \in \mathbb{Z}^d \\ & \prod_{s=1}^S Y_s^2 \prod_{k=1}^K Z_k(g_k,\boldsymbol{m}_k) Z_k^{-1} = (\mathbb{0},\mathbf{0}) \ \text{has a solution in } A[\boldsymbol{X}^{\pm 1}]/\langle \boldsymbol{X}^L = \mathbb{1} \rangle \rtimes \mathbb{Z}^d/L \\ & \iff \exists \boldsymbol{n}_1,\ldots,\boldsymbol{n}_S \in \mathbb{Z}^d : \end{split}$$

$$\prod_{k=1}^K Z_k(g_k, \boldsymbol{m}_k) Z_k^{-1} = (\mathbb{O}, \sum_{s=1}^S 2\boldsymbol{n}_s) \text{ has a solution in } A[\boldsymbol{X}^{\pm 1}]/\langle \boldsymbol{X}^L = \mathbb{1}, \boldsymbol{X}^{\boldsymbol{n}_s} = -\mathbb{1}\rangle \rtimes \mathbb{Z}^d/L$$

$$I \supseteq \mathscr{I}(L)$$
: ideal of $A[X^{\pm 1}]$, $w \in (A \wr B) \star F(X \setminus \{Y\})$

Then:
$$Y^2w = (0, \mathbf{0})$$
 has a solution in $A[\mathbf{X}^{\pm 1}]/I \rtimes \mathbb{Z}^d/L$

$$\iff \exists n \in \mathbb{Z}^d: \quad w = (0, 2n) \text{ has a solution in } A[\mathbf{X}^{\pm 1}]/\langle I, \mathbf{X}^n + 1 \rangle \rtimes \mathbb{Z}^d/L$$

Idea:
$$(f, \mathbf{n})^2 = (f, \mathbf{n}) (f, \mathbf{n}) = (f + \mathbf{X}^n f, 2\mathbf{n}) = (f(1 + \mathbf{X}^n), 2\mathbf{n})$$

$$\exists \textit{\textbf{n}}_1, \dots, \textit{\textbf{n}}_{\textit{\textbf{S}}} : \prod_{k=1}^{\textit{K}} Z_k(g_k, \textit{\textbf{m}}_k) Z_k^{-1} = (\mathbb{O}, \sum_{s=1}^{\textit{S}} 2\textit{\textbf{n}}_s) \text{ sol. in } A[\textit{\textbf{X}}^{\pm 1}]/\langle \textit{\textbf{X}}^{\textit{L}} = -\textit{\textbf{X}}^{\textit{\textbf{n}}_s} = \mathbb{1} \rangle \rtimes \mathbb{Z}^d/L$$

$$\exists \textit{\textbf{n}}_1, \dots, \textit{\textbf{n}}_{\mathcal{S}} : \prod_{k=1}^{\mathcal{K}} Z_k(g_k, \textit{\textbf{m}}_k) Z_k^{-1} = (\mathbb{O}, \sum_{s=1}^{\mathcal{S}} 2\textit{\textbf{n}}_s) \text{ sol. in } A[\textit{\textbf{X}}^{\pm 1}]/\langle \textit{\textbf{X}}^{\textit{L}} = -\textit{\textbf{X}}^{\textit{\textbf{n}}_s} = \mathbb{1} \rangle \rtimes \mathbb{Z}^d/L$$

$$\exists \textbf{\textit{n}}_1, \dots, \textbf{\textit{n}}_S : \prod_{k=1}^K Z_k(g_k, \textbf{\textit{m}}_k) Z_k^{-1} = (\mathbb{O}, \sum_{s=1}^S 2\textbf{\textit{n}}_s) \text{ sol. in } A[\textbf{\textit{X}}^{\pm 1}]/\langle \textbf{\textit{X}}^L = -\textbf{\textit{X}}^{\textbf{\textit{n}}_s} = \mathbb{1} \rangle \rtimes \mathbb{Z}^d/L$$

Lemma (Magic Lemma 2)

 $I \supseteq \mathscr{I}(L)$: ideal of $A[\mathbf{X}^{\pm 1}]$

$$\exists \textbf{\textit{n}}_1, \dots, \textbf{\textit{n}}_S : \prod_{k=1}^K Z_k(g_k, \textbf{\textit{m}}_k) Z_k^{-1} = (\mathbb{O}, \sum_{s=1}^S 2\textbf{\textit{n}}_s) \text{ sol. in } A[\textbf{\textit{X}}^{\pm 1}]/\langle \textbf{\textit{X}}^L = -\textbf{\textit{X}}^{\textbf{\textit{n}}_s} = \mathbb{1} \rangle \rtimes \mathbb{Z}^d/L$$

Lemma (Magic Lemma 2)

 $I \supset \mathscr{I}(L)$: ideal of $A[\mathbf{X}^{\pm 1}]$ The above has a solution in $A[\mathbf{X}^{\pm 1}]/\langle I, \mathbf{X}^{n_s} = -\mathbb{1} \rangle \rtimes \mathbb{Z}^d/L \iff$

27 / 34

$$\exists \textit{\textbf{n}}_1, \dots, \textit{\textbf{n}}_{\mathcal{S}} : \prod_{k=1}^{\mathcal{K}} Z_k(g_k, \textit{\textbf{m}}_k) Z_k^{-1} = (\mathbb{O}, \sum_{s=1}^{\mathcal{S}} 2\textit{\textbf{n}}_s) \text{ sol. in } A[\textit{\textbf{X}}^{\pm 1}]/\langle \textit{\textbf{X}}^{L} = -\textit{\textbf{X}}^{\textit{\textbf{n}}_s} = \mathbb{1} \rangle \rtimes \mathbb{Z}^d/L$$

$$I\supseteq \mathscr{I}(L)$$
: ideal of $A[\mathbf{X}^{\pm 1}]$ The above has a solution in $A[\mathbf{X}^{\pm 1}]/\langle I, \mathbf{X}^{\mathbf{n}_s} = -\mathbb{1}
angle
times \mathbb{Z}^d/L \iff$

$$\exists \mathbf{n} \in \mathbb{Z}^d : \sum_{k=1}^K \mathbf{m}_k = 2\mathbf{n} \text{ in } \mathbb{Z}^d/L$$

&
$$\exists \mathbf{n}'_1, \dots, \mathbf{n}'_{S-1} \in \mathbb{Z}^d : \prod_{k=1}^K Z_k(g_k, \mathbf{m}_k) Z_k^{-1} = (0, 2\mathbf{n})$$

$$\exists \textit{\textbf{n}}_1, \dots, \textit{\textbf{n}}_{\mathcal{S}} : \prod_{k=1}^{\mathcal{K}} Z_k(g_k, \textit{\textbf{m}}_k) Z_k^{-1} = (\mathbb{O}, \sum_{s=1}^{\mathcal{S}} 2\textit{\textbf{n}}_s) \text{ sol. in } A[\textit{\textbf{X}}^{\pm 1}]/\langle \textit{\textbf{X}}^{L} = -\textit{\textbf{X}}^{\textit{\textbf{n}}_s} = \mathbb{1} \rangle \rtimes \mathbb{Z}^d/L$$

$$I\supseteq \mathscr{I}(L)$$
: ideal of $A[\pmb{X}^{\pm 1}]$ The above has a solution in $A[\pmb{X}^{\pm 1}]/\langle I,\pmb{X}^{\pmb{n}_s}=-\mathbb{1}
angle
times\mathbb{Z}^d/L\iff$

$$\exists \mathbf{n} \in \mathbb{Z}^d : \sum_{k=1}^K \mathbf{m}_k = 2\mathbf{n} \text{ in } \mathbb{Z}^d/L$$

$$\& \exists \mathbf{n}'_1, \dots, \mathbf{n}'_{S-1} \in \mathbb{Z}^d : \prod_{k=1}^K Z_k(g_k, \mathbf{m}_k) Z_k^{-1} = (0, 2\mathbf{n})$$
sol. in $A[\mathbf{X}^{\pm 1}]/\langle I, \mathbf{X}^{\mathbf{n}'_s} = -1, \mathbf{X}^{\mathbf{n}} = -(-1)^S \rangle \rtimes \mathbb{Z}^d/L$

Result After Magic Lemma 2

$$\exists \boldsymbol{n} : \sum_{k=1}^K \boldsymbol{m}_k = 2\boldsymbol{n} \text{ in } \mathbb{Z}^d/L$$

$$\& \exists \boldsymbol{n}_1', \dots, \boldsymbol{n}_{S-1}' : \prod_{k=1}^K Z_k(g_k, \boldsymbol{m}_k) Z_k^{-1} = (0, 2\boldsymbol{n})$$
 has sol. in $A[\boldsymbol{X}^{\pm 1}]/\langle \boldsymbol{X}^L = -\boldsymbol{X}^{n_s'} = (-1)^{S+1} \boldsymbol{X}^{\boldsymbol{n}} = 1 \rangle \rtimes \mathbb{Z}^d/L$

Result After Magic Lemma 2

$$\exists \boldsymbol{n} : \sum_{k=1}^K \boldsymbol{m}_k = 2\boldsymbol{n} \text{ in } \mathbb{Z}^d/L$$
 & $\exists \boldsymbol{n}_1', \dots, \boldsymbol{n}_{S-1}' : \prod_{k=1}^K Z_k(g_k, \boldsymbol{m}_k) Z_k^{-1} = (\mathbb{O}, 2\boldsymbol{n})$ has sol. in $A[\boldsymbol{X}^{\pm 1}]/\langle \boldsymbol{X}^L = -\boldsymbol{X}^{n_s'} = (-\mathbb{1})^{S+1} \boldsymbol{X}^{\boldsymbol{n}} = \mathbb{1}\rangle \rtimes \mathbb{Z}^d/L$

We may swap quantifiers:

Result After Magic Lemma 2

$$\exists \boldsymbol{n} : \sum_{k=1}^{K} \boldsymbol{m}_{k} = 2\boldsymbol{n} \text{ in } \mathbb{Z}^{d}/L$$
 & $\exists \boldsymbol{n}'_{1}, \dots, \boldsymbol{n}'_{S-1} : \prod_{k=1}^{K} Z_{k}(g_{k}, \boldsymbol{m}_{k}) Z_{k}^{-1} = (0, 2\boldsymbol{n})$ has sol. in $A[\boldsymbol{X}^{\pm 1}]/\langle \boldsymbol{X}^{L} = -\boldsymbol{X}^{\boldsymbol{n}'_{s}} = (-1)^{S+1} \boldsymbol{X}^{\boldsymbol{n}} = 1 \rangle \rtimes \mathbb{Z}^{d}/L$

We may swap quantifiers:

$$\exists \mathbf{n}'_1, \dots, \mathbf{n}'_{S-1} \exists \mathbf{n} : \sum_{k=1}^K \mathbf{m}_k = 2\mathbf{n} \text{ in } \mathbb{Z}^d/L \text{ and } \prod_{k=1}^K Z_k(g_k, \mathbf{m}_k) Z_k^{-1} = (0, 2\mathbf{n}) \text{ has sol.}$$

$$\exists extbf{ extit{n}}_1', \dots, extbf{ extit{n}}_{S-1}' \exists extbf{ extit{n}} : \sum_{k=1}^K extbf{ extit{m}}_k = 2 extbf{ extit{n}} ext{ in } \mathbb{Z}^d/L ext{ and } \prod_{k=1}^K Z_k(g_k, extbf{ extit{m}}_k) Z_k^{-1} = (\mathbb{0}, 2 extbf{ extit{n}}) ext{ has sol. in } A[extbf{ extit{X}}^{\pm 1}]/\langle extbf{ extit{X}}^L = - extbf{ extit{X}}^{ extit{n}'_s} = (-\mathbb{1})^{S+1} extbf{ extit{X}}^{ extit{n}} = \mathbb{1} \rangle
ightarrow \mathbb{Z}^d/L$$

$$\exists extbf{ extit{n}}_1', \dots, extbf{ extit{n}}_{S-1}' \exists extbf{ extit{n}} : \sum_{k=1}^K extbf{ extit{m}}_k = 2 extbf{ extit{n}} ext{ in } \mathbb{Z}^d/L ext{ and } \prod_{k=1}^K Z_k(g_k, extbf{ extit{m}}_k) Z_k^{-1} = (\mathbb{0}, 2 extbf{ extit{n}}) ext{ has sol. in } A[extbf{ extit{X}}^{\pm 1}]/\langle extbf{ extit{X}}^L = - extbf{ extit{X}}^{ extit{n}}_s' = (\mathbb{0}, 2 extbf{ extit{n}}) ext{ has sol. in } A[extbf{ extit{X}}^{\pm 1}]/\langle extbf{ extit{X}}^L = - extbf{ extit{X}}^{ extit{n}}_s' = (\mathbb{0}, 2 extbf{ extit{n}}) ext{ has sol. in } A[extbf{ extit{X}}^{\pm 1}]/\langle extbf{ extit{X}}^L = - extbf{ extit{X}}^{ extit{n}}_s' = (\mathbb{0}, 2 extbf{ extit{n}}) ext{ has sol. in } A[extbf{ extit{N}}]/\langle extbf{ extit{N}}^L = - extbf{ extit{X}}^{ extbf{ extit{n}}}_s' = (\mathbb{0}, 2 extbf{ extit{n}}) ext{ has sol. in } A[extbf{ extit{N}}]/\langle extbf{ extit{N}}^L = - extbf{ extit{N}}^{ extit{n}}_s' = (\mathbb{0}, 2 extbf{ extit{n}}) ext{ has sol. in } A[extbf{ extit{n}}]/\langle extbf{ extit{N}}^L = - extbf{ extit{N}}^{ extbf{ extit{n}}}_s' = (\mathbb{0}, 2 extbf{ extit{n}}) extbf{ extit{n}} extbf{ extit{n}}_s' = (\mathbb{0}, 2 extbf{ extit{n}}) extbf{ extit{n}}_s' = (\mathbb{0}, 2 extbf{ extit{n}}_s') extbf{ extit{n}}_s' = (\mathbb{0}, 2 extbf{ extit{n}}) extbf{ extit{n}}_s' = (\mathbb{0}, 2 extbf{ extbf{n}}_s') extbf{ extbf{n}}_s' = (\mathbb{0}, 2 extbf{ extbf{n}}_s') extbf{ extbf{n}}_s' = (\mathbb{0}, 2 extbf{ extbf{n}}_s') extbf{ extbf{n}}_s' = (\mathbb{0}, 2 extbf{n}) extbf{ extbf{n$$

$$\exists extbf{ extit{n}}_1', \ldots, extbf{ extit{n}}_{S-1}' \exists extbf{ extit{n}} : \sum_{k=1}^K extbf{ extit{m}}_k = 2 extbf{ extit{n}} ext{ in } \mathbb{Z}^d/L ext{ and } \prod_{k=1}^K Z_k(g_k, extbf{ extit{m}}_k) Z_k^{-1} = (\mathbb{O}, 2 extbf{ extit{n}}) ext{ has sol. in } A[extbf{ extit{X}}^{\pm 1}]/\langle extbf{ extit{X}}^L = - extbf{ extit{X}}^{ extit{n}}_s' = (\mathbb{O}, 2 extbf{ extit{n}}) ext{ has sol. in } A[extbf{ extit{X}}^{\pm 1}]/\langle extbf{ extit{X}}^L = - extbf{ extit{X}}^{ extit{n}}_s' = (\mathbb{O}, 2 extbf{ extit{n}}) ext{ has sol. in } A[extbf{ extit{X}}^{\pm 1}]/\langle extbf{ extit{X}}^L = - extbf{ extit{X}}^{ extit{n}}_s' = (\mathbb{O}, 2 extbf{ extit{n}}) ext{ has sol. in } A[extbf{ extit{N}}]/\langle extbf{ extit{N}}^L = - extbf{ extit{X}}^{ extit{n}}_s' = (\mathbb{O}, 2 extbf{ extit{n}}) ext{ has sol. in } A[extbf{ extit{N}}]/\langle extbf{ extit{N}}^L = - extbf{ extit{N}}]/\langle extbf{ extit{N}}^L = (\mathbb{O}, 2 extbf{ extit{n}}) ext{ has sol. in } A[extbf{ extit{N}}]/\langle extbf{ extit{N}}^L = - extbf{ extit{N}}]/\langle extbf{ extit{N}}^L = (\mathbb{O}, 2 extbf{ extit{n}}) extbf{ extit{N}} extbf{ extit{N}} extbf{ extit{n}} = (\mathbb{O}, 2 extbf{ extit{n}}) extbf{ extit{N}} extbf{ extit{n}} = (\mathbb{O}, 2 extbf{ extit{n}}) extbf{ extit{n}} extbf{ extit{n}} extbf{ extit{n}} extbf{ extit{n}} = (\mathbb{O}, 2 extbf{ extit{n}}) extbf{ extit{n}} extbf{ extbf{n}} e$$

$$I \supseteq \mathscr{I}(L)$$
: ideal of $A[\mathbf{X}^{\pm 1}]$

$$\exists \textit{\textbf{n}}_1', \dots, \textit{\textbf{n}}_{S-1}' \exists \textit{\textbf{n}} : \sum_{k=1}^K \textit{\textbf{m}}_k = 2\textit{\textbf{n}} \text{ in } \mathbb{Z}^d/L \text{ and } \prod_{k=1}^K Z_k(g_k, \textit{\textbf{m}}_k) Z_k^{-1} = (\mathbb{0}, 2\textit{\textbf{n}}) \text{ has sol. in } \\ A[\textit{\textbf{X}}^{\pm 1}]/\langle \textit{\textbf{X}}^L = -\textit{\textbf{X}}^{\textit{\textbf{n}}_s'} = (-\mathbb{1})^{S+1} \textit{\textbf{X}}^{\textit{\textbf{n}}} = \mathbb{1} \rangle \rtimes \mathbb{Z}^d/L$$

Lemma (Magic Lemma 3)

k=1

$$I\supseteq \mathscr{I}(L)$$
: ideal of $A[\mathbf{X}^{\pm 1}]$ Then:

$$\prod^{K} Z_k(g_k, \boldsymbol{m}_k) Z_k^{-1} = (0, \boldsymbol{c}) \text{ sol. in } A[\boldsymbol{X}^{\pm 1}] / I \rtimes \mathbb{Z}^d / L$$

$$\exists \textit{\textbf{n}}_1', \dots, \textit{\textbf{n}}_{S-1}' \exists \textit{\textbf{n}} : \sum_{k=1}^K \textit{\textbf{m}}_k = 2\textit{\textbf{n}} \text{ in } \mathbb{Z}^d/L \text{ and } \prod_{k=1}^K Z_k(g_k, \textit{\textbf{m}}_k) Z_k^{-1} = (\mathbb{0}, 2\textit{\textbf{n}}) \text{ has sol. in } \\ A[\textit{\textbf{X}}^{\pm 1}]/\langle \textit{\textbf{X}}^L = -\textit{\textbf{X}}^{\textit{\textbf{n}}_s'} = (-\mathbb{1})^{S+1} \textit{\textbf{X}}^{\textit{\textbf{n}}} = \mathbb{1} \rangle \rtimes \mathbb{Z}^d/L$$

$$I\supseteq \mathscr{I}(L)$$
: ideal of $A[\mathbf{X}^{\pm 1}]$ Then:

$$\prod_{k=1}^{K} Z_k(g_k, \boldsymbol{m}_k) Z_k^{-1} = (0, \boldsymbol{c}) \text{ sol. in } A[\boldsymbol{X}^{\pm 1}] / I \rtimes \mathbb{Z}^d / L$$

$$\iff \sum_{k=1}^K \boldsymbol{m}_k = \boldsymbol{c} \text{ in } \mathbb{Z}^d/L \text{ and }$$

$$\exists \textit{\textbf{n}}_1', \dots, \textit{\textbf{n}}_{S-1}' \exists \textit{\textbf{n}} : \sum_{k=1}^K \textit{\textbf{m}}_k = 2\textit{\textbf{n}} \text{ in } \mathbb{Z}^d/L \text{ and } \prod_{k=1}^K Z_k(g_k, \textit{\textbf{m}}_k) Z_k^{-1} = (\mathbb{0}, 2\textit{\textbf{n}}) \text{ has sol. in } \\ A[\textit{\textbf{X}}^{\pm 1}]/\langle \textit{\textbf{X}}^L = -\textit{\textbf{X}}^{\textit{\textbf{n}}_s'} = (-\mathbb{1})^{S+1} \textit{\textbf{X}}^{\textit{\textbf{n}}} = \mathbb{1} \rangle \rtimes \mathbb{Z}^d/L$$

$$I \supseteq \mathscr{I}(L)$$
: ideal of $A[\mathbf{X}^{\pm 1}]$ Then:

$$\prod^{\kappa} Z_k(g_k, \boldsymbol{m}_k) Z_k^{-1} = (0, \boldsymbol{c}) \text{ sol. in } A[\boldsymbol{X}^{\pm 1}] / I \rtimes \mathbb{Z}^d / L$$

$$\iff \sum^K m{m}_k = m{c} \ \text{in} \ \mathbb{Z}^d/L \ \text{and} \ \prod^K Z_k(g_k,0) Z_k^{-1} = (\mathbb{0},0) \ \text{sol. in}$$

$$\exists \textit{\textbf{n}}_1', \dots, \textit{\textbf{n}}_{S-1}' \exists \textit{\textbf{n}} : \sum_{k=1}^K \textit{\textbf{m}}_k = 2\textit{\textbf{n}} \text{ in } \mathbb{Z}^d/L \text{ and } \prod_{k=1}^K Z_k(g_k, \textit{\textbf{m}}_k) Z_k^{-1} = (\mathbb{0}, 2\textit{\textbf{n}}) \text{ has sol. in } \\ A[\textit{\textbf{X}}^{\pm 1}]/\langle \textit{\textbf{X}}^L = -\textit{\textbf{X}}^{\textit{\textbf{n}}_s'} = (-\mathbb{1})^{S+1} \textit{\textbf{X}}^{\textit{\textbf{n}}} = \mathbb{1} \rangle \rtimes \mathbb{Z}^d/L$$

$$I \supseteq \mathscr{I}(L)$$
: ideal of $A[\mathbf{X}^{\pm 1}]$ Then:

$$\prod^{K} Z_k(g_k, \boldsymbol{m}_k) Z_k^{-1} = (0, \boldsymbol{c}) \text{ sol. in } A[\boldsymbol{X}^{\pm 1}] / I \rtimes \mathbb{Z}^d / L$$

$$\iff \sum_{k=0}^K \mathbf{m}_k = \mathbf{c} \text{ in } \mathbb{Z}^d/L \text{ and } \prod_{k=0}^K Z_k(g_k,0)Z_k^{-1} = (0,0) \text{ sol. in } A[\mathbf{X}^{\pm 1}]/\langle \mathbf{I}, \mathbf{X}^{\mathbf{m}_k} = \mathbb{1} \rangle \rtimes \mathbb{Z}^d/L$$

$$\exists \textbf{\textit{n}}_1', \dots, \textbf{\textit{n}}_{S-1}' \exists \textbf{\textit{n}} : \sum_{k=1}^K \textbf{\textit{m}}_k = 2\textbf{\textit{n}} \text{ in } \mathbb{Z}^d/L \text{ and } \prod_{k=1}^K Z_k(g_k, \textbf{\textit{pr}}_k) Z_k^{-1} = (\mathbb{O}, 2\textbf{\textit{n}}) \text{ has sol. in } \\ A[\textbf{\textit{X}}^{\pm 1}]/\langle \textbf{\textit{X}}^L = -\textbf{\textit{X}}^{\textbf{\textit{n}}_s'} = (-\mathbb{1})^{S+1} \textbf{\textit{X}}^{\textbf{\textit{n}}} = \mathbb{1} \rangle \rtimes \mathbb{Z}^d/L$$

$$I \supseteq \mathscr{I}(L)$$
: ideal of $A[\mathbf{X}^{\pm 1}]$ Then:

$$\prod^{K} Z_k(g_k, \boldsymbol{m}_k) Z_k^{-1} = (0, \boldsymbol{c}) \text{ sol. in } A[\boldsymbol{X}^{\pm 1}] / I \rtimes \mathbb{Z}^d / L$$

$$\iff \sum_{k=0}^K \mathbf{m}_k = \mathbf{c} \text{ in } \mathbb{Z}^d/L \text{ and } \prod_{k=0}^K Z_k(g_k,0)Z_k^{-1} = (0,0) \text{ sol. in } A[\mathbf{X}^{\pm 1}]/\langle \mathbf{I}, \mathbf{X}^{\mathbf{m}_k} = \mathbb{1} \rangle \rtimes \mathbb{Z}^d/L$$

$$\exists \textit{\textbf{n}}_1', \dots, \textit{\textbf{n}}_{S-1}' \exists \textit{\textbf{n}} : \sum_{k=1}^K \textit{\textbf{m}}_k = 2\textit{\textbf{n}} \text{ in } \mathbb{Z}^d/L \text{ and } \prod_{k=1}^K Z_k(g_k, \textit{\textbf{pn}}_k) Z_k^{-1} = (\mathbb{0}, 2\textit{\textbf{n}}) \text{ has sol. in } \\ \textit{\textbf{X}}^{\textit{\textbf{m}}_k} = \mathbb{1} \text{ by Magic Lemma 4} \\ A[\textit{\textbf{X}}^{\pm 1}]/\langle \textit{\textbf{X}}^L = -\textit{\textbf{X}}^{\textit{\textbf{n}}_s'} = (-\mathbb{1})^{S+1} \textit{\textbf{X}}^{\textit{\textbf{n}}} = \mathbb{1} \rangle \rtimes \mathbb{Z}^d/\mathbb{X}$$

$$I \supseteq \mathscr{I}(L)$$
: ideal of $A[\mathbf{X}^{\pm 1}]$ Then:

$$\prod^{\kappa} Z_k(g_k, \boldsymbol{m}_k) Z_k^{-1} = (0, \boldsymbol{c}) \text{ sol. in } A[\boldsymbol{X}^{\pm 1}] / I \rtimes \mathbb{Z}^d / L$$

$$\iff \sum_{k=0}^K \mathbf{m}_k = \mathbf{c} \text{ in } \mathbb{Z}^d/L \text{ and } \prod_{k=0}^K Z_k(g_k,0)Z_k^{-1} = (0,0) \text{ sol. in } A[\mathbf{X}^{\pm 1}]/\langle \mathbf{I}, \mathbf{X}^{\mathbf{m}_k} = \mathbb{1} \rangle \rtimes \mathbb{Z}^d/L$$

$$\exists \mathbf{n}'_1,\ldots,\mathbf{n}'_{S-1}\exists \mathbf{n}:$$

$$\exists \mathbf{n}'_1,\ldots,\mathbf{n}'_{S-1}\exists \mathbf{n}:$$

$$\exists \textit{\textbf{n}}_1',\ldots,\textit{\textbf{n}}_{S-1}'\exists \textit{\textbf{n}}:$$

$$\mathbf{0} \; \sum_{k=1}^K \textbf{\textit{m}}_k = 2 \textbf{\textit{n}} \; \text{in} \; \mathbb{Z}^d / L \; \text{and} \;$$

2
$$\prod_{k=1}^{K} Z_k(g_k, 0) Z_k^{-1} = (0, 0)$$
 has sol. in

$$\exists \mathbf{n}'_1,\ldots,\mathbf{n}'_{S-1}\exists \mathbf{n}:$$

$$\mathbf{1} \sum_{k=1}^K \boldsymbol{m}_k = 2\boldsymbol{n} \text{ in } \mathbb{Z}^d/L \text{ and }$$

$$\exists \mathbf{n}'_1,\ldots,\mathbf{n}'_{S-1}\exists \mathbf{n}:$$

$$1 \sum_{k=1}^K \boldsymbol{m}_k = 2\boldsymbol{n} \text{ in } \mathbb{Z}^d/L \text{ and }$$

Recall: "Lamplighter at origin \implies conjugation is translation"

$$\exists \mathbf{n}'_1,\ldots,\mathbf{n}'_{S-1}\exists \mathbf{n}:$$

$$\mathbf{1} \; \sum_{k=1}^K \boldsymbol{m}_k = 2 \boldsymbol{n} \; \text{in} \; \mathbb{Z}^d / L \; \text{and} \;$$

Recall: "Lamplighter at origin \implies conjugation is translation"

Fact

$$\prod_{k=1}^K Z_k(g_k,0)Z_k^{-1}=(\mathbb{0},\mathbf{0})$$
 has a solution in $A[\mathbf{X}^{\pm 1}]/I imes\mathbb{Z}^d$ any ideal

$$\exists \mathbf{n}'_1,\ldots,\mathbf{n}'_{S-1}\exists \mathbf{n}:$$

$$\bullet \sum_{k=1}^K \boldsymbol{m}_k = 2\boldsymbol{n} \text{ in } \mathbb{Z}^d/L \text{ and}$$

Recall: "Lamplighter at origin \implies conjugation is translation"

Fact

$$\prod_{k=1}^K Z_k(g_k,0) Z_k^{-1} = (\mathbb{O},\mathbf{0}) \text{ has a solution in } A[\mathbf{X}^{\pm 1}]/I \rtimes \mathbb{Z}^d$$

$$\iff \exists \boldsymbol{\kappa}_1,\ldots,\boldsymbol{\kappa}_K \in \mathbb{Z}^d : \sum_{k=1}^K \mathbf{X}^{\boldsymbol{\kappa}_k} g_k = \mathbb{O} \text{ in } A[\mathbf{X}^{\pm 1}]/I$$

$$\exists \mathbf{n}'_1, \dots, \mathbf{n}'_{S-1} \exists \mathbf{n} : \mathbf{1} \sum_{k=1}^K \mathbf{m}_k = 2\mathbf{n} \text{ in } \mathbb{Z}^d/L \text{ and }$$

$$\exists \mathbf{n}'_1, \dots, \mathbf{n}'_{S-1} \exists \mathbf{n} : \mathbf{1} \sum_{k=1}^K \mathbf{m}_k = 2\mathbf{n} \text{ in } \mathbb{Z}^d/L \text{ and }$$

Observation: We may move along the lattice $\langle L, n'_s, n, m_k \rangle$ to make the κ_k "small"

$$\exists \mathbf{n}'_1, \dots, \mathbf{n}'_{S-1} \exists \mathbf{n} : \mathbf{0} \sum_{k=1}^K \mathbf{m}_k = 2\mathbf{n} \text{ in } \mathbb{Z}^d/L \text{ and }$$

Observation: We may move along the lattice $\langle L, \mathbf{n}'_s, \mathbf{n}, \mathbf{m}_k \rangle$ to make the κ_k "small" But: sometimes this creates a -1!

$$\exists \mathbf{n}'_1, \dots, \mathbf{n}'_{S-1} \exists \mathbf{n} : \mathbf{0} \sum_{k=1}^{K} \mathbf{m}_k = 2\mathbf{n} \text{ in } \mathbb{Z}^d/L \text{ and }$$

Observation: We may move along the lattice $\langle L, n'_s, n, m_k \rangle$ to make the κ_k "small" But: sometimes this creates a -1!

$$\exists \mathbf{n}'_1, \dots, \mathbf{n}'_{S-1} \exists \mathbf{n} : \mathbf{1} \sum_{k=1}^K \mathbf{m}_k = 2\mathbf{n} \text{ in } \mathbb{Z}^d/L \text{ and }$$

Observation: We may move along the lattice $\langle L, n'_s, n, m_k \rangle$ to make the κ_k "small" But: sometimes this creates a -1!

Lemma (Magic Lemma 5)

 $L \subseteq \mathbb{Z}^d \times \mathbb{Z}/2\mathbb{Z}$: extended lattice with $\exists \ell : (\ell, 1) \in L$

$$\exists \mathbf{n}'_1, \dots, \mathbf{n}'_{S-1} \exists \mathbf{n} : \mathbf{0} \sum_{k=1}^K \mathbf{m}_k = 2\mathbf{n} \text{ in } \mathbb{Z}^d/L \text{ and }$$

Observation: We may move along the lattice $\langle L, n'_s, n, m_k \rangle$ to make the κ_k "small" But: sometimes this creates a -1!

Lemma (Magic Lemma 5)

 $L \subseteq \mathbb{Z}^d \times \mathbb{Z}/2\mathbb{Z}$: extended lattice with $\exists \ell : (\ell, 1) \in L$ $g_k \in A[X^{\pm 1}]$ with $\operatorname{supp} g_k \subseteq [-D, D]^d$

$$\exists \mathbf{n}'_1, \dots, \mathbf{n}'_{S-1} \exists \mathbf{n} : \mathbf{0} \sum_{k=1}^K \mathbf{m}_k = 2\mathbf{n} \text{ in } \mathbb{Z}^d/L \text{ and }$$

Observation: We may move along the lattice $\langle L, n'_s, n, m_k \rangle$ to make the κ_k "small" But: sometimes this creates a -1!

$$L \subseteq \mathbb{Z}^d \times \mathbb{Z}/2\mathbb{Z}$$
: extended lattice with $\exists \ell : (\ell, 1) \in L$ $g_k \in A[X^{\pm 1}]$ with $\operatorname{supp} g_k \subseteq [-D, D]^d$

Then:
$$\exists \kappa_1, \dots, \kappa_K \in \mathbb{Z}^d : \sum_{k=1}^K \mathbf{X}^{\kappa_k} g_k = 0 \text{ in } A[\mathbf{X}^{\pm 1}]/\mathscr{I}(L)$$

$$\exists \mathbf{n}'_1, \dots, \mathbf{n}'_{S-1} \exists \mathbf{n} : \mathbf{1} \sum_{k=1}^K \mathbf{m}_k = 2\mathbf{n} \text{ in } \mathbb{Z}^d/L \text{ and }$$

Observation: We may move along the lattice $\langle L, n'_s, n, m_k \rangle$ to make the κ_k "small" But: sometimes this creates a -1!

$$L \subseteq \mathbb{Z}^d \times \mathbb{Z}/2\mathbb{Z}$$
: extended lattice with $\exists \ell : (\ell, 1) \in L$ $g_k \in A[X^{\pm 1}]$ with $\operatorname{supp} g_k \subseteq [-D, D]^d$

Then:
$$\exists \kappa_1, \dots, \kappa_K \in \mathbb{Z}^d : \sum_{i=1}^K \mathbf{X}^{\kappa_k} g_k = 0 \text{ in } A[\mathbf{X}^{\pm 1}]/\mathscr{I}(L)$$

$$\iff \exists \kappa_1', \dots, \kappa_K' \in [-2KD, 2KD]^d : \sum_{k=1}^K \quad \mathbf{X}^{\kappa_k'} \mathbf{g}_k = 0 \text{ in } A[\mathbf{X}^{\pm 1}] / \mathscr{I}(L)$$

$$\exists \mathbf{n}'_1, \dots, \mathbf{n}'_{S-1} \exists \mathbf{n} : \mathbf{1} \sum_{k=1}^K \mathbf{m}_k = 2\mathbf{n} \text{ in } \mathbb{Z}^d/L \text{ and }$$

Observation: We may move along the lattice $\langle L, n'_s, n, m_k \rangle$ to make the κ_k "small" But: sometimes this creates a -1!

$$L \subseteq \mathbb{Z}^d \times \mathbb{Z}/2\mathbb{Z}$$
: extended lattice with $\exists \ell : (\ell, 1) \in L$ $g_k \in A[X^{\pm 1}]$ with $\operatorname{supp} g_k \subseteq [-D, D]^d$

Then:
$$\exists \kappa_1, \dots, \kappa_K \in \mathbb{Z}^d : \sum_{k=1}^K \mathbf{X}^{\kappa_k} g_k = 0 \text{ in } A[\mathbf{X}^{\pm 1}]/\mathscr{I}(L)$$

$$\iff \frac{\exists \kappa_1', \dots, \kappa_K' \in [-2KD, 2KD]^d}{\exists \sigma_1, \dots, \sigma_K \in \{\pm 1\}} : \sum_{k=1}^K \sigma_k \mathbf{X}^{\kappa_k'} \mathbf{g}_k = 0 \text{ in } A[\mathbf{X}^{\pm 1}] / \mathscr{I}(L)$$

$$g_k \in A[\boldsymbol{X}^{\pm 1}], \text{ supp } g_k \subseteq [-D, D]^d, \quad \boldsymbol{m}_k \in \mathbb{Z}^d$$

$$\prod_{s=1}^{m} Y_s^2 \prod_{k=1}^{m} Z_k(g_k, \boldsymbol{m}_k) Z_k^{-1} = (0, \boldsymbol{0}) \text{ has a solution in } A \wr B$$

Summing up and re-ordering quantifiers, we get: $g_k \in A[\mathbf{X}^{\pm 1}], \operatorname{supp} g_k \subseteq [-D, D]^d, \quad \mathbf{m}_k \in \mathbb{Z}^d$

$$\prod_{s=1}^{J} Y_s^2 \prod_{k=1}^{K} Z_k(g_k, \boldsymbol{m}_k) Z_k^{-1} = (0, \boldsymbol{0}) \text{ has a solution in } A \wr B$$

$$\iff \frac{\exists \boldsymbol{\kappa}_1', \dots, \boldsymbol{\kappa}_K' \in [-2KD, 2KD]^d}{\exists \sigma_1, \dots, \sigma_K \in \{\pm 1\}} :$$

$$g_k \in A[\mathbf{X}^{\pm 1}], \ \operatorname{supp} g_k \subseteq [-D, D]^d, \quad \mathbf{m}_k \in \mathbb{Z}^d$$

$$\prod_{s=1}^S Y_s^2 \prod_{k=1}^K Z_k(g_k, \mathbf{m}_k) Z_k^{-1} = (0, \mathbf{0}) \ \text{has a solution in } A \wr B$$

$$\iff \exists \mathbf{\kappa}_1', \dots, \mathbf{\kappa}_K' \in [-2KD, 2KD]^d \\ \exists \sigma_1, \dots, \sigma_K \in \{\pm 1\} :$$

$$\exists \mathbf{n} : \ \mathbf{1} \sum_{k=1}^K \mathbf{m}_k = 2\mathbf{n} \ \text{in } \mathbb{Z}^d/L \quad \text{and}$$

$$\prod_{s=1}^{S} Y_s^2 \prod_{k=1}^{K} Z_k(g_k, \mathbf{m}_k) Z_k^{-1} = (\mathbb{O}, \mathbf{0}) \text{ has a solution in } A \wr B$$

$$\iff \exists \mathbf{\kappa}_1', \dots, \mathbf{\kappa}_K' \in [-2KD, 2KD]^d \\ \exists \sigma_1, \dots, \sigma_K \in \{\pm 1\} :$$

$$\exists \mathbf{n} : \mathbf{1} \sum_{k=1}^{K} \mathbf{m}_k = 2\mathbf{n} \text{ in } \mathbb{Z}^d / L \text{ and}$$

$$\textbf{2} \ \exists \textbf{\textit{n}}_1', \dots, \textbf{\textit{n}}_{S-1}' : \sum_{k=1}^K \sigma_k \textbf{\textit{X}}^{\kappa_k'} g_k = \mathbb{0} \ \text{in} \ A[\textbf{\textit{X}}^{\pm 1}] / (\langle \textbf{\textit{X}}^L = (-\mathbb{1})^{S+1} \textbf{\textit{X}}^{\textbf{\textit{n}}} = \textbf{\textit{X}}^{\textbf{\textit{m}}_k} = \mathbb{1} \rangle + \langle \textbf{\textit{X}}^{\textbf{\textit{n}}_s'} = -\mathbb{1} \rangle)$$

$$\prod_{s=1}^{S} Y_s^2 \prod_{k=1}^{K} Z_k(g_k, \boldsymbol{m}_k) Z_k^{-1} = (0, \boldsymbol{0}) \text{ has a solution in } A \wr B$$

$$\iff^{\exists \kappa_1', \dots, \kappa_K' \in [-2KD, 2KD]^d} : \longleftarrow \text{finitely many values!}$$

$$\exists \boldsymbol{n}: \; \mathbf{0} \sum_{k=1}^K \boldsymbol{m}_k = 2\boldsymbol{n} \; \text{in} \; \mathbb{Z}^d/L \quad \text{and}$$

$$\textbf{2} \ \exists \textbf{\textit{n}}_1', \dots, \textbf{\textit{n}}_{S-1}': \sum_{k=1}^K \sigma_k \textbf{\textit{X}}^{\kappa_k'} g_k = \mathbb{0} \ \text{in} \ A[\textbf{\textit{X}}^{\pm 1}]/(\langle \textbf{\textit{X}}^L = (-\mathbb{1})^{S+1} \textbf{\textit{X}}^{\textbf{\textit{n}}} = \textbf{\textit{X}}^{\textbf{\textit{m}}_k} = \mathbb{1}\rangle + \langle \textbf{\textit{X}}^{\textbf{\textit{n}}_s'} = -\mathbb{1}\rangle)$$

Summing up and re-ordering quantifiers, we get:

Satisfies
$$g_k \in A[\mathbf{X}^{\pm 1}]$$
, $\operatorname{supp} g_k \subseteq [-D, D]^d$, $\mathbf{m}_k \in \mathbb{Z}^d$
$$\prod_{s=1}^S Y_s^2 \prod_{k=1}^K Z_k(g_k, \mathbf{m}_k) Z_k^{-1} = (\mathbb{O}, \mathbf{0}) \text{ has a solution in } A \wr B$$

$$\iff \exists \kappa_1', \dots, \kappa_K' \in [-2KD, 2KD]^d \\ \exists \sigma_1, \dots, \sigma_K \in \{\pm 1\} \end{cases} : \iff \text{finitely many values!}$$

$$\exists \mathbf{n} : \mathbf{1} \sum_{k=1}^K \mathbf{m}_k = 2\mathbf{n} \text{ in } \mathbb{Z}^d / L \iff \text{can check this/find } \mathbf{n}$$

$$\mathbf{2} \exists \mathbf{n}_1', \dots, \mathbf{n}_{S-1}' : \sum_{k=1}^K \sigma_k \mathbf{X}^{\kappa_k'} g_k = \mathbb{O} \text{ in } A[\mathbf{X}^{\pm 1}] / (\langle \mathbf{X}^L = (-1)^{S+1} \mathbf{X}^n = \mathbf{X}^{m_k} = 1 \rangle + 1$$

 $\langle \boldsymbol{X}^{\boldsymbol{n}_{s}'} = -1 \rangle$

$$\exists n: \mathbf{1} \sum_{k=1}^{n} m_k = 2n \text{ in } \mathbb{Z}^d/L \iff \text{ we can check this/find } n$$

$$\mathbf{2} \exists \mathbf{n}'_1, \dots, \mathbf{n}'_{S-1} : \sum_{k=1}^K \sigma_k \mathbf{X}^{\kappa'_k} g_k = 0 \text{ in } A[\mathbf{X}^{\pm 1}] / (\langle \mathbf{X}^L = (-1)^{S+1} \mathbf{X}^n = \mathbf{X}^{m_k} = 1 \rangle + \langle \mathbf{X}^{n'_s} = -1 \rangle)$$

Summing up and re-ordering quantifiers, we get:

$$\prod_{s=1}^{S} Y_s^2 \prod_{k=1}^{K} Z_k(g_k, \boldsymbol{m}_k) Z_k^{-1} = (0, \boldsymbol{0}) \text{ has a solution in } A \wr B$$

$$m_k \in \mathbb{Z}^d$$

$$\iff^{\exists \kappa_1', \dots, \kappa_K' \in [-2KD, 2KD]^d} :\longleftarrow \text{ finitely many values!}$$

$$\exists n: \ 1 \sum_{k=1}^K m_k = 2n \text{ in } \mathbb{Z}^d/L$$
 \leftarrow and we can check this/find n

$$\exists \mathbf{n}'_1, \dots, \mathbf{n}'_{S-1} : \sum_{k=1}^K \sigma_k \mathbf{X}^{\kappa'_k} g_k = 0 \text{ in } A[\mathbf{X}^{\pm 1}] / (\langle \mathbf{X}^L = (-1)^{S+1} \mathbf{X}^n = \mathbf{X}^{m_k} = 1 \rangle + \langle \mathbf{X}^{n'_s} = -1 \rangle)$$

We may treat everything except the n_s' as constants!

$$\exists \mathbf{\textit{n}}_{1}^{\prime}, \ldots, \mathbf{\textit{n}}_{S-1}^{\prime}: \sum_{k=1}^{K} \sigma_{k} \mathbf{\textit{X}}^{\kappa_{k}^{\prime}} \mathbf{\textit{g}}_{k} = 0 \text{ in } A[\mathbf{\textit{X}}^{\pm 1}]/(\langle \mathbf{\textit{X}}^{L} = (-\mathbb{1})^{S+1} \mathbf{\textit{X}}^{n} = \mathbf{\textit{X}}^{m_{k}} = \mathbb{1}\rangle + \langle \mathbf{\textit{X}}^{n_{s}^{\prime}} = -\mathbb{1}\rangle)$$

$$\exists \mathbf{n}_1', \dots, \mathbf{n}_{S-1}' : \sum_{k=1}^K \sigma_k \mathbf{X}^{\kappa_k'} g_k = 0 \text{ in } A[\mathbf{X}^{\pm 1}] / (\langle \mathbf{X}^L = (-1)^{S+1} \mathbf{X}^n = \mathbf{X}^{m_k} = 1 \rangle + \langle \mathbf{X}^{n_s'} = -1 \rangle)$$

Proposition

The problem

Input:

Question:

$$\exists \mathbf{\textit{n}}_{1}^{\prime}, \ldots, \mathbf{\textit{n}}_{S-1}^{\prime}: \sum_{k=1}^{K} \sigma_{k} \mathbf{\textit{X}}^{\kappa_{k}^{\prime}} g_{k} = 0 \text{ in } A[\mathbf{\textit{X}}^{\pm 1}]/(\langle \mathbf{\textit{X}}^{L} = (-1)^{S+1} \mathbf{\textit{X}}^{n} = \mathbf{\textit{X}}^{m_{k}} = 1 \rangle + \langle \mathbf{\textit{X}}^{n_{s}^{\prime}} = -1 \rangle)$$

Proposition

The problem

Input: $f \in A[X^{\pm 1}]$,

Question:

$$\exists \mathbf{\textit{n}}_{1}^{\prime}, \ldots, \mathbf{\textit{n}}_{S-1}^{\prime}: \sum_{k=1}^{K} \sigma_{k} \mathbf{\textit{X}}^{\kappa_{k}^{\prime}} g_{k} = 0 \text{ in } A[\mathbf{\textit{X}}^{\pm 1}]/(\langle \mathbf{\textit{X}}^{L} = (-1)^{S+1} \mathbf{\textit{X}}^{n} = \mathbf{\textit{X}}^{m_{k}} = 1 \rangle + \langle \mathbf{\textit{X}}^{n_{s}^{\prime}} = -1 \rangle)$$

Proposition

The problem

Input: $f \in A[X^{\pm 1}]$.

L: extended lattice

Question:

$$\exists \mathbf{\textit{n}}_{1}^{\prime}, \ldots, \mathbf{\textit{n}}_{S-1}^{\prime}: \sum_{k=1}^{K} \sigma_{k} \mathbf{\textit{X}}^{\kappa_{k}^{\prime}} g_{k} = \mathbb{0} \text{ in } A[\mathbf{\textit{X}}^{\pm 1}]/(\langle \mathbf{\textit{X}}^{L} = (-\mathbb{1})^{S+1} \mathbf{\textit{X}}^{n} = \mathbf{\textit{X}}^{m_{k}} = \mathbb{1}\rangle + \langle \mathbf{\textit{X}}^{n_{s}^{\prime}} = -\mathbb{1}\rangle)$$

Proposition

The problem

Input: $f \in A[X^{\pm 1}]$,

L: extended lattice and

 $R \in \mathbb{N}$

Question:

$$\exists \mathbf{\textit{n}}_{1}^{\prime}, \ldots, \mathbf{\textit{n}}_{S-1}^{\prime}: \sum_{k=1}^{K} \sigma_{k} \mathbf{\textit{X}}^{\kappa_{k}^{\prime}} g_{k} = 0 \text{ in } A[\mathbf{\textit{X}}^{\pm 1}]/(\langle \mathbf{\textit{X}}^{L} = (-\mathbb{1})^{S+1} \mathbf{\textit{X}}^{n} = \mathbf{\textit{X}}^{m_{k}} = \mathbb{1}\rangle + \langle \mathbf{\textit{X}}^{n_{s}^{\prime}} = -\mathbb{1}\rangle)$$

Proposition

The problem

Input: $f \in A[X^{\pm 1}]$,

L: extended lattice and

 $R \in \mathbb{N}$

Question: $\exists \mathbf{k}_1, \dots, \mathbf{k}_R \in \mathbb{Z}^d : f = 0 \text{ in } A[\mathbf{X}^{\pm 1}]/$

is decidable.

?

$$\exists \mathbf{\textit{n}}_{1}^{\prime}, \ldots, \mathbf{\textit{n}}_{S-1}^{\prime}: \sum_{k=1}^{K} \sigma_{k} \mathbf{\textit{X}}^{\kappa_{k}^{\prime}} g_{k} = 0 \text{ in } A[\mathbf{\textit{X}}^{\pm 1}]/(\langle \mathbf{\textit{X}}^{L} = (-1)^{S+1} \mathbf{\textit{X}}^{n} = \mathbf{\textit{X}}^{m_{k}} = 1 \rangle + \langle \mathbf{\textit{X}}^{n_{s}^{\prime}} = -1 \rangle)$$

Proposition

The problem

Input: $f \in A[X^{\pm 1}]$,

L: extended lattice and

 $R \in \mathbb{N}$

Question: $\exists \mathbf{k}_1, \dots, \mathbf{k}_R \in \mathbb{Z}^d : f = 0 \text{ in } A[\mathbf{X}^{\pm 1}]/(\mathscr{I}(L))$

$$\exists \mathbf{\textit{n}}_{1}^{\prime}, \ldots, \mathbf{\textit{n}}_{S-1}^{\prime}: \sum_{k=1}^{K} \sigma_{k} \mathbf{\textit{X}}^{\kappa_{k}^{\prime}} g_{k} = \mathbb{0} \text{ in } A[\mathbf{\textit{X}}^{\pm 1}]/(\langle \mathbf{\textit{X}}^{L} = (-\mathbb{1})^{S+1} \mathbf{\textit{X}}^{n} = \mathbf{\textit{X}}^{m_{k}} = \mathbb{1}\rangle + \langle \mathbf{\textit{X}}^{n_{s}^{\prime}} = -\mathbb{1}\rangle)$$

Proposition

The problem

Input: $f \in A[X^{\pm 1}]$,

L: extended lattice and

 $R \in \mathbb{N}$

Question: $\exists \mathbf{k}_1, \dots, \mathbf{k}_R \in \mathbb{Z}^d : f = 0 \text{ in } A[\mathbf{X}^{\pm 1}]/(\mathscr{I}(L) + \langle \mathbf{X}^{\mathbf{k}_i} = -\mathbb{1} \rangle)$?

Thank you!