

Maximal Subgroups of Special Inverse Monoids II

Jan Philipp Wächter

Department of Mathematics University of Manchester

joint work with

Robert Gray and Mark Kambites

This research was supported by EPSRC

1 July 2025

Theorem (Malheiro; 2005)

M: special (ordinary, non-inverse) monoid

All maximal subgroups are isomorphic to the group of units:

 $\forall e \in E(M) : [e]_{\mathcal{H}} \simeq [1]_{\mathcal{H}}$

Theorem (Malheiro; 2005)

M: special (ordinary, non-inverse) monoid

All maximal subgroups are isomorphic to the group of units:

 $\forall \textbf{\textit{e}} \in \textit{E}(\textit{M}): [\textbf{\textit{e}}]_{\mathcal{H}} \simeq [1]_{\mathcal{H}}$

Theorem (Gray, Kambites; arXiv 2023)

M: E-unitary special inverse monoid

All maximal subgroups virtually embed into the group of units:

$$\forall \textbf{\textit{e}} \in \textit{E}(\textit{M}): [\textbf{\textit{e}}]_{\mathcal{H}} \geq_{\textit{f.i.}} \textit{H} \hookrightarrow [1]_{\mathcal{H}}$$

Theorem (Malheiro; 2005)

M: special (ordinary, non-inverse) monoid

All maximal subgroups are isomorphic to the group of units:

 $\forall \textbf{\textit{e}} \in \textit{E}(\textit{M}): [\textbf{\textit{e}}]_{\mathcal{H}} \simeq [1]_{\mathcal{H}}$

Theorem (Gray, Kambites; arXiv 2023)

M: E-unitary special inverse monoid

All maximal subgroups virtually embed into the group of units:

$$\forall \textbf{\textit{e}} \in \textit{E}(\textit{M}): [\textbf{\textit{e}}]_{\mathcal{H}} \geq_{\textit{f.i.}} \textit{H} \hookrightarrow [1]_{\mathcal{H}}$$

In both cases: The group of units "dominates" the maximal subgroups.

Theorem (Malheiro; 2005)

M: special (ordinary, non-inverse) monoid

All maximal subgroups are isomorphic to the group of units:

 $\forall \textbf{\textit{e}} \in \textit{E}(\textit{M}): [\textbf{\textit{e}}]_{\mathcal{H}} \simeq [1]_{\mathcal{H}}$

Theorem (Gray, Kambites; arXiv 2023)

M: E-unitary special inverse monoid

All maximal subgroups virtually embed into the group of units:

$$\forall \textbf{\textit{e}} \in \textit{E}(\textit{M}): [\textbf{\textit{e}}]_{\mathcal{H}} \geq_{\textit{f.i.}} \textit{H} \hookrightarrow [1]_{\mathcal{H}}$$

In both cases: The group of units "dominates" the maximal subgroups.

What about arbitrary (non-E-unitary) inverse monoids?

Reminder: The Word Problem

Theorem (Ivanov, Margolis, Meakin; 2001)

The word problem for one-relator monoids reduces to the word problem for special one-relator inverse monoid.

Reminder: The Word Problem

Theorem (Ivanov, Margolis, Meakin; 2001)

The word problem for one-relator monoids reduces to the word problem for special one-relator inverse monoid. \leftarrow these are generally not E—unitary!

Theorem (Gray, Kambites, W.; WIP)

G: finitely presented group

Theorem (Gray, Kambites, W.; WIP)

G: finitely presented group $\implies \exists M_G$: special inverse monoid s. t.

Theorem (Gray, Kambites, W.; WIP)

G: finitely presented group $\implies \exists M_G$: special inverse monoid s. t.

1 the group of units $[1]_{\mathcal{H}}$ is trivial and

Theorem (Gray, Kambites, W.; WIP)

- G: finitely presented group $\implies \exists M_G$: special inverse monoid s. t.
 - 1 the group of units $[1]_{\mathcal{H}}$ is trivial and
 - **2** G is the maximal subgroup at some idempotent e (i. e. $[e]_{\mathcal{H}} \simeq G$)

Theorem (Gray, Kambites, W.; WIP)

- G: finitely presented group $\implies \exists M_G$: special inverse monoid s. t.
 - 1 the group of units $[1]_{\mathcal{H}}$ is trivial and
 - **2** G is the maximal subgroup at some idempotent e (i. e. $[e]_{\mathcal{H}} \simeq G$)

Theorem (Stephen; 1990)

e: idempotent in an inverse monoid $M \implies \operatorname{Aut} S\Gamma(e) \simeq [e]_{\mathcal{H}}$

Theorem (Gray, Kambites, W.; WIP)

- G: finitely presented group $\implies \exists M_G$: special inverse monoid s. t.
 - 1 the group of units $[1]_{\mathcal{H}}$ is trivial and
 - **2** G is the maximal subgroup at some idempotent e (i. e. $[e]_{\mathcal{H}} \simeq G$)

Theorem (Stephen; 1990)

e: idempotent in an inverse monoid $M \Longrightarrow \operatorname{Aut} S\Gamma(e) \simeq [e]_{\mathcal{H}}$

Thus: We need to construct M_G such that

Theorem (Gray, Kambites, W.; WIP)

- G: finitely presented group $\implies \exists M_G$: special inverse monoid s. t.
 - 1 the group of units $[1]_{\mathcal{H}}$ is trivial and
 - **2** G is the maximal subgroup at some idempotent e (i. e. $[e]_{\mathcal{H}} \simeq G$)

Theorem (Stephen; 1990)

e: idempotent in an inverse monoid $M \Longrightarrow \operatorname{Aut} S\Gamma(e) \simeq [e]_{\mathcal{H}}$

Thus: We need to construct M_G such that

 \bullet $S\Gamma(1)$ has trivial automorphism group and

Theorem (Gray, Kambites, W.; WIP)

- G: finitely presented group $\implies \exists M_G$: special inverse monoid s. t.
 - 1 the group of units $[1]_{\mathcal{H}}$ is trivial and
 - **2** G is the maximal subgroup at some idempotent e (i. e. $[e]_{\mathcal{H}} \simeq G$)

Theorem (Stephen; 1990)

e: idempotent in an inverse monoid $M \Longrightarrow \operatorname{Aut} S\Gamma(e) \simeq [e]_{\mathcal{H}}$

Thus: We need to construct M_G such that

- **1** $S\Gamma(1)$ has trivial automorphism group and
- 2 the automorphism group of $S\Gamma(e)$ is G.

$$G = \operatorname{Mon}\langle B \mid r_1 = \cdots = r_R = 1 \rangle$$
: any finitely presented group with $r_k \in B^+$

$$G=\operatorname{Mon}\langle B\mid r_1=\cdots=r_R=1
angle$$
 : any finitely presented group with $r_k\in B^+$ $e_{\:ullet}$ O : $\operatorname{Mon}\langle b,c\mid bc=cb=1
angle\simeq \mathbb{Z}$

$$G=\operatorname{Mon}\langle B\mid r_1=\cdots=r_R=1
angle$$
 : any finitely presented group with $r_k\in B^+$ e , g .: $\operatorname{Mon}\langle b,c\mid bc=cb=1
angle\simeq \mathbb{Z}$
$$M_G=\operatorname{Inv}\langle B, \qquad |$$

$$G = \operatorname{Mon}\langle B \mid r_1 = \cdots = r_R = 1 \rangle$$
: any finitely presented group with $r_k \in B^+$ $e_{\bullet} \circ g_{\bullet}$: $\operatorname{Mon}\langle b, c \mid bc = cb = 1 \rangle \simeq \mathbb{Z}$

 $M_G = \operatorname{Inv} \langle B, p_0, p_1, \dots, p_R, d \mid$

$$G = \operatorname{Mon}\langle B \mid r_1 = \cdots = r_R = 1 \rangle$$
: any finitely presented group with $r_k \in B^+$ $e \cdot Q \cdot \operatorname{Mon}\langle b, c \mid bc = cb = 1 \rangle \simeq \mathbb{Z}$

$$M_{G} = \operatorname{Inv} \left\langle B, p_{0}, p_{1}, \dots, p_{R}, d \mid \mathbb{I}: p_{i}bp_{i}^{-1} p_{i}b^{-1}p_{i}^{-1} = 1 \text{ for all } b \in B, i \in \{0, \dots, R\}, \right.$$

$$G = \operatorname{Mon}\langle B \mid r_1 = \cdots = r_R = 1 \rangle$$
: any finitely presented group with $r_k \in B^+$ $e \cdot Q \cdot : \operatorname{Mon}\langle b, c \mid bc = cb = 1 \rangle \simeq \mathbb{Z}$

$$M_{\mathcal{G}} = \operatorname{Inv} \left\langle B, p_0, p_1, \dots, p_R, d \; \middle| \; \; \; \text{$\mathbb{I}: p_i b p_i^{-1} p_i b^{-1} p_i^{-1} = 1$ for all $b \in B$, $i \in \{0, \dots, R\}$,} \right.$$

Graphically:

$$G = \operatorname{Mon}\langle B \mid r_1 = \cdots = r_R = 1 \rangle$$
: any finitely presented group with $r_k \in B^+$ $e_{\bullet} \circ g_{\bullet} \colon \operatorname{Mon}\langle b, c \mid bc = cb = 1 \rangle \simeq \mathbb{Z}$

$$M_{\mathcal{G}} = \operatorname{Inv} \left\langle \mathcal{B}, \rho_0, \rho_1, \dots, \rho_R, d \mid \mathbb{I}: \rho_i b \rho_i^{-1} \rho_i b^{-1} \rho_i^{-1} = 1 \text{ for all } b \in \mathcal{B}, i \in \{0, \dots, R\}, \mathbb{I}: \rho_0 d \rho_0^{-1} = 1,$$

Graphically:

$$G=\operatorname{Mon}\langle B\mid r_1=\cdots=r_R=1
angle$$
: any finitely presented group with $r_k\in B^+$ e.g.: $\operatorname{Mon}\langle b,c\mid bc=cb=1
angle\simeq \mathbb{Z}$

$$\begin{split} \textit{M}_{\textit{G}} &= \mathrm{Inv} \left< \textit{B}, \textit{p}_{0}, \textit{p}_{1}, \ldots, \textit{p}_{\textit{R}}, \textit{d} \; \; \middle| \quad \text{I: } \textit{p}_{i} \textit{b} \textit{p}_{i}^{-1} \; \textit{p}_{i} \textit{b}^{-1} \textit{p}_{i}^{-1} = 1 \; \text{for all } \textit{b} \in \textit{B}, \textit{i} \in \{0, \ldots, \textit{R}\}, \\ & \text{II: } \textit{p}_{0} \textit{d} \textit{p}_{0}^{-1} = 1, \\ & \text{III: } \textit{p}_{k} \textit{d} \textit{r}_{k} \textit{d} \textit{p}_{k}^{-1} = 1 \; \text{for all } \textit{k} \in \{1, \ldots, \textit{R}\} \; \right> \end{split}$$

Graphically:

where $r_k = b_1 \dots b_l$

$$\circ \xrightarrow{p_0} d$$

• Consider the idempotent $e = p_0^{-1} p_0 \prod_{k=1}^R p_k^{-1} p_k$:

$$o \xrightarrow{p_0} a$$

• Consider the idempotent $e = p_0^{-1} p_0 \prod_{k=1}^R p_k^{-1} p_k$:

• Consider the idempotent $e = p_0^{-1} p_0 \prod_{k=1}^R p_k^{-1} p_k$:

• Consider the idempotent $e = p_0^{-1} p_0 \prod_{k=1}^R p_k^{-1} p_k$:

• Consider the idempotent $e = p_0^{-1} p_0 \prod_{k=1}^R p_k^{-1} p_k$:

• Consider the idempotent $e = p_0^{-1} p_0 \prod_{k=1}^R p_k^{-1} p_k$:

• Consider the idempotent $e = p_0^{-1} p_0 \prod_{k=1}^R p_k^{-1} p_k$:

• Consider the idempotent $e = p_0^{-1} p_0 \prod_{k=1}^R p_k^{-1} p_k$:

• Consider the idempotent $e = p_0^{-1} p_0 \prod_{k=1}^R p_k^{-1} p_k$:

• Consider the idempotent $e = p_0^{-1} p_0 \prod_{k=1}^R p_k^{-1} p_k$:

• Consider the idempotent $e = p_0^{-1} p_0 \prod_{k=1}^R p_k^{-1} p_k$:

Relations:

• We attach a "decorated" loop labeled by a relator.

• Consider the idempotent $e = p_0^{-1} p_0 \prod_{k=1}^R p_k^{-1} p_k$:

• Consider the idempotent $e = p_0^{-1} p_0 \prod_{k=1}^R p_k^{-1} p_k$:

- It turns out: the additional parts yield no additional automorphisms!

• Consider the idempotent $e = p_0^{-1} p_0 \prod_{k=1}^R p_k^{-1} p_k$:

- It turns out: the additional parts yield no additional automorphisms!
- How can we make this formal?

• Consider the idempotent $e = p_0^{-1} p_0 \prod_{k=1}^R p_k^{-1} p_k$:

- It turns out: the additional parts yield no additional automorphisms!
- How can we make this formal? We need an appropriate description!

Example

Example

 $V = \{A, B\}$: set of nonterminals

Example

 $V = \{A, B\}$: set of nonterminals $\Sigma = \{a, b\}$: edge labels

Example

 $V = \{A, B\}$: set of nonterminals $\Sigma = \{a, b\}$: edge labels Rules:

Example

 $V = \{A, B\}$: set of nonterminals $\Sigma = \{a, b\}$: edge labels

Rules:

Example

 $V = \{A, B\}$: set of nonterminals $\Sigma = \{a, b\}$: edge labels

Rules:

Example

 $V = \{A, B\}$: set of nonterminals $\Sigma = \{a, b\}$: edge labels

Rules:

Example

 $V = \{A, B\}$: set of nonterminals $\Sigma = \{a, b\}$: edge labels

Rules:

Example

 $V = \{A, B\}$: set of nonterminals $\Sigma = \{a, b\}$: edge labels

Rules:

Example

 $V = \{A, B\}$: set of nonterminals $\Sigma = \{a, b\}$: edge labels

Rules:

Example

 $V = \{A, B\}$: set of nonterminals $\Sigma = \{a, b\}$: edge labels

Rules:

Example

 $V = \{A, B\}$: set of nonterminals $\Sigma = \{a, b\}$: edge labels

Rules:

Example

 $V = \{A, B\}$: set of nonterminals $\Sigma = \{a, b\}$: edge labels

Rules:

Example

 $V = \{A, B\}$: set of nonterminals $\Sigma = \{a, b\}$: edge labels

Rules:

Example

 $V = \{A, B\}$: set of nonterminals $\Sigma = \{a, b\}$: edge labels

Rules:

Example

 $V = \{A, B\}$: set of nonterminals $\Sigma = \{a, b\}$: edge labels

Rules:

Generated Graph: vs "intermediate graphs"

A Grammar for $\overline{S\Gamma(1)}$

A Grammar for $\overline{S\Gamma(1)}$

A Grammar for $\overline{S\Gamma(1)}$

$$M = \operatorname{Inv}\langle A \mid \lambda_i = 1 \rangle$$

$$M = \operatorname{Inv}\langle A \mid \lambda_i = 1 \rangle$$
 $e \in A^{\pm *}$ with $e^2 = e$ in M

$$extbf{ extit{M}} = \operatorname{Inv}\langle A \mid \lambda_i = 1
angle \quad e \in A^{\pm *} ext{ with } e^2 = e ext{ in } extbf{ extit{M}} \quad \Gamma : A^{\pm 1}$$
-labeled directed graph with root q

$$M = \operatorname{Inv}\langle A \mid \lambda_i = 1 \rangle$$
 $e \in A^{\pm *}$ with $e^2 = e$ in $M \cap \Gamma : A^{\pm 1}$ -labeled directed graph with root $q \cap \Gamma \simeq S\Gamma(e) \iff$

Theorem (Stephen; 1990)

$$extbf{M} = \operatorname{Inv}\langle A \mid \lambda_i = 1 \rangle \quad e \in A^{\pm *} \text{ with } e^2 = e \text{ in } extbf{M} \quad \Gamma : A^{\pm 1} \text{-labeled directed graph with root } q \Gamma \simeq S\Gamma(e) \iff$$

 $oldsymbol{1}$ Γ is symmetric, strongly connected, deterministic

$$M = \operatorname{Inv}\langle A \mid \lambda_i = 1 \rangle$$
 $e \in A^{\pm *}$ with $e^2 = e$ in $M \cap \Gamma : A^{\pm 1}$ -labeled directed graph with root $q \cap \Gamma \simeq S\Gamma(e) \iff$

- $oldsymbol{1}$ Γ is symmetric, strongly connected, deterministic
- $e \in \mathscr{L}(q,q)$

$$M = \operatorname{Inv}\langle A \mid \lambda_i = 1 \rangle$$
 $e \in A^{\pm *}$ with $e^2 = e$ in $M \cap \Gamma : A^{\pm 1}$ -labeled directed graph with root $q \cap \Gamma \simeq S\Gamma(e) \iff$

- $oldsymbol{1}$ Γ is symmetric, strongly connected, deterministic
- $e \in \mathscr{L}(q,q)$

$$M = \operatorname{Inv}\langle A \mid \lambda_i = 1 \rangle$$
 $e \in A^{\pm *}$ with $e^2 = e$ in $M \cap \Gamma : A^{\pm 1}$ -labeled directed graph with root $q \cap \Gamma \simeq S\Gamma(e) \iff$

- $oldsymbol{1}$ Γ is symmetric, strongly connected, deterministic
- $e \in \mathscr{L}(q,q)$

$$M = \operatorname{Inv}\langle A \mid \lambda_i = 1 \rangle$$
 $e \in A^{\pm *}$ with $e^2 = e$ in $M \cap \Gamma : A^{\pm 1}$ -labeled directed graph with root $q \cap \Gamma \simeq S\Gamma(e) \iff$

- $oldsymbol{1}$ Γ is symmetric, strongly connected, deterministic
- **2** $e \in \mathcal{L}(q,q) \longrightarrow trivial for <math>e = 1$

Theorem (Stephen; 1990)

$$M = \operatorname{Inv}\langle A \mid \lambda_i = 1 \rangle$$
 $e \in A^{\pm *}$ with $e^2 = e$ in M $\Gamma : A^{\pm 1}$ -labeled directed graph with root q $\Gamma \simeq S\Gamma(e) \iff$

- **1** Γ is symmetric, strongly connected, deterministic \leadsto check neighborhoods
- **2** $e \in \mathcal{L}(q,q) \longrightarrow trivial for <math>e = 1$
- **3** $\forall p \in \Gamma : \lambda_i \in \mathcal{L}(p,p) \longrightarrow check$ extended neighborhoods
- $4 \mathscr{L}(q,q) \subseteq \mathscr{U}(e) = \{ u \in A^{\pm *} \mid u \ge e \text{ in } e \}$

In our grammar: the neighborhood is fully determined by the nonterminal!

Theorem (Stephen; 1990)

$$M = \operatorname{Inv}\langle A \mid \lambda_i = 1 \rangle$$
 $e \in A^{\pm *}$ with $e^2 = e$ in $M \cap \Gamma : A^{\pm 1}$ -labeled directed graph with root $q \cap \Gamma \simeq S\Gamma(e) \iff$

- **1** Γ is symmetric, strongly connected, deterministic \leadsto check neighborhoods
- **2** $e \in \mathcal{L}(q,q) \longrightarrow trivial for <math>e = 1$
- **3** $\forall p \in \Gamma : \lambda_i \in \mathcal{L}(p, p) \longrightarrow check$ extended neighborhoods
- **4** $\mathcal{L}(q,q) \subseteq \mathcal{U}(e) = \{u \in A^{\pm *} \mid u \ge e \text{ in } e\}$ → This is the tricky part!

In our grammar: the neighborhood is fully determined by the nonterminal!

Theorem (Stephen; 1990)

$$M = \operatorname{Inv}\langle A \mid \lambda_i = 1 \rangle$$
 $e \in A^{\pm *}$ with $e^2 = e$ in $M \cap \Gamma : A^{\pm 1}$ -labeled directed graph with root $q \cap \Gamma \simeq S\Gamma(e) \iff$

- **1** Γ is symmetric, strongly connected, deterministic \leadsto check neighborhoods
- **2** $e \in \mathcal{L}(q,q) \longrightarrow trivial for <math>e = 1$
- **3** $\forall p \in \Gamma : \lambda_i \in \mathcal{L}(p, p) \longrightarrow check \text{ extended neighborhoods}$
- **4** $\mathcal{L}(q,q) \subseteq \mathcal{U}(e) = \{u \in A^{\pm *} \mid u \ge e \text{ in } e\}$ → This is the tricky part!

In our grammar: the neighborhood is fully determined by the nonterminal! This neighborhood characterization also helps us to show that there are no automorphism.

Theorem (Stephen; 1990)

$$M = \operatorname{Inv}\langle A \mid \lambda_i = 1 \rangle$$
 $e \in A^{\pm *}$ with $e^2 = e$ in $M \cap \Gamma : A^{\pm 1}$ -labeled directed graph with root $q \cap \Gamma \simeq S\Gamma(e) \iff$

- **1** Γ is symmetric, strongly connected, deterministic \leadsto check neighborhoods
- **2** $e \in \mathcal{L}(q,q) \longrightarrow trivial for <math>e = 1$
- **4** $\mathcal{L}(q,q) \subseteq \mathcal{U}(e) = \{u \in A^{\pm *} \mid u \ge e \text{ in } e\}$ → This is the tricky part!

In our grammar: the neighborhood is fully determined by the nonterminal! This neighborhood characterization also helps us to show that there are no automorphism. Note: We only have to show that the root must be mapped to itself.

1 July 2025

Jan Philipp Wächter (UoM)

1 July 2025

1 July 2025

1 July 2025

• It remains to show: $\mathscr{L}(q,q)\subseteq\mathscr{U}(1)=\{u\in A^{\pm*}\mid u\geq 1 \text{ in } e\}$

- It remains to show: $\mathscr{L}(q,q) \subseteq \mathscr{U}(1) = \{u \in A^{\pm *} \mid u \geq 1 \text{ in } e\}$
- ullet Formally, we define the generated graph Γ^* as the direct limit of the intermediate graphs Γ .

- It remains to show: $\mathscr{L}(q,q) \subseteq \mathscr{U}(1) = \{u \in A^{\pm *} \mid u \geq 1 \text{ in } e\}$
- ullet Formally, we define the generated graph Γ^* as the direct limit of the intermediate graphs Γ .
- Thus: It suffice to show the inclusion for all intermediate graphs!

- It remains to show: $\mathscr{L}(q,q) \subseteq \mathscr{U}(1) = \{u \in A^{\pm *} \mid u \geq 1 \text{ in } e\}$
- ullet Formally, we define the generated graph Γ^* as the direct limit of the intermediate graphs Γ .
- Thus: It suffice to show the inclusion for all intermediate graphs!
- This allows for an inductive argument:

- It remains to show: $\mathscr{L}(q,q) \subseteq \mathscr{U}(1) = \{u \in A^{\pm *} \mid u \geq 1 \text{ in } e\}$
- ullet Formally, we define the generated graph Γ^* as the direct limit of the intermediate graphs Γ .
- Thus: It suffice to show the inclusion for all intermediate graphs!
- This allows for an inductive argument:
 - Assume: Γ turns into Γ' in one step

- It remains to show: $\mathscr{L}(q,q) \subseteq \mathscr{U}(1) = \{u \in A^{\pm *} \mid u \geq 1 \text{ in } e\}$
- ullet Formally, we define the generated graph Γ^* as the direct limit of the intermediate graphs Γ .
- Thus: It suffice to show the inclusion for all intermediate graphs!
- This allows for an inductive argument:

Assume: Γ turns into Γ' in one step and $\mathscr{L}(\Gamma) \subseteq \mathscr{U}(1)$

- It remains to show: $\mathscr{L}(q,q) \subseteq \mathscr{U}(1) = \{u \in A^{\pm *} \mid u \geq 1 \text{ in } e\}$
- ullet Formally, we define the generated graph Γ^* as the direct limit of the intermediate graphs Γ .
- Thus: It suffice to show the inclusion for all intermediate graphs!
- This allows for an inductive argument:

Assume: Γ turns into Γ' in one step and $\mathscr{L}(\Gamma) \subseteq \mathscr{U}(1)$ To show: $\mathscr{L}(\Gamma') \subset \mathscr{U}(1)$

• Let x label a circle at the root.

- Let x label a circle at the root.
- If it lies completely in Γ , we have $x \in \mathcal{U}(1)$ by induction.

- Let x label a circle at the root.
- If it lies completely in Γ , we have $x \in \mathcal{U}(1)$ by induction.
- Otherwise, factorize it at P_k :

• W.I.o.g.: no other P_k visits

- Let x label a circle at the root.
- If it lies completely in Γ , we have $x \in \mathcal{U}(1)$ by induction.
- Otherwise, factorize it at P_k :

• W.I.o.g.: no other P_k visits

- Let x label a circle at the root.
- If it lies completely in Γ , we have $x \in \mathcal{U}(1)$ by induction.
- Otherwise, factorize it at P_k :

- W.l.o.g.: no other P_k visits
- We know: $u = u'p_k$ and $w = p_k^{-1}w'$

- Let x label a circle at the root.
- If it lies completely in Γ , we have $x \in \mathcal{U}(1)$ by induction.
- Otherwise, factorize it at P_k :

- W.l.o.g.: no other P_k visits
- We know: $u = u'p_k$ and $w = p_k^{-1}w'$
- Options for *v*

- Let x label a circle at the root.
- If it lies completely in Γ , we have $x \in \mathcal{U}(1)$ by induction.
- Otherwise, factorize it at P_k :

- W.I.o.g.: no other P_k visits
- We know: $u = u'p_k$ and $w = p_k^{-1}w'$
- Options for v
 - $v = p_i p_i^{-1}$

- Let x label a circle at the root.
- If it lies completely in Γ , we have $x \in \mathcal{U}(1)$ by induction.
- Otherwise, factorize it at P_k :

- W.I.o.g.: no other P_k visits
- We know: $u = u'p_k$ and $w = p_k^{-1}w'$
- Options for v
 - $v = p_i p_i^{-1}$
 - $v = bb^{-1}$

- Let x label a circle at the root.
- If it lies completely in Γ , we have $x \in \mathcal{U}(1)$ by induction.
- Otherwise, factorize it at P_k :

- W.I.o.g.: no other P_k visits
- We know: $u = u'p_k$ and $w = p_k^{-1}w'$
- Options for v
 - $v = p_i p_i^{-1}$
 - $v = bb^{-1}$
 - $v = db_1 \dots b_L d$

- Let x label a circle at the root.
- If it lies completely in Γ , we have $x \in \mathcal{U}(1)$ by induction.
- Otherwise, factorize it_at P_k :

- W.I.o.g.: no other P_k visits
- We know: $u = u'p_k$ and $w = p_k^{-1}w'$
- Options for *v*
 - $v = p_i p_i^{-1}$
 - $v = bb^{-1}$
 - $v = db_1 \dots b_L d$
 - $v = db_1 \dots b_i b_i^{-1} \dots b_1^{-1} d^{-1}$

• $x = uvw = u' p_k db_1 \dots b_l p_k^{-1} w'$

- Let x label a circle at the root.
- If it lies completely in Γ , we have $x \in \mathcal{U}(1)$ by induction.
- Otherwise, factorize it at P_k :

- W.I.o.g.: no other P_k visits
- We know: $u = u'p_k$ and $w = p_k^{-1}w'$
- Options for v
 - $v = p_i p_i^{-1}$
 - $v = bb^{-1}$
 - $v = db_1 \dots b_L d$
 - $v = db_1 \dots b_i b_i^{-1} \dots b_1^{-1} d^{-1}$

•
$$x = uvw = u' \underbrace{p_k db_1 \dots b_l p_k^{-1}}_{=1} w'$$

- Let x label a circle at the root.
- If it lies completely in Γ , we have $x \in \mathcal{U}(1)$ by induction.
- Otherwise, factorize it_at P_k :

- W.I.o.g.: no other P_k visits
- We know: $u = u'p_k$ and $w = p_k^{-1}w'$
- Options for v
 - $v = p_i p_i^{-1}$
 - $v = bb^{-1}$
 - $v = db_1 \dots b_L d$
 - $v = db_1 \dots b_i b_i^{-1} \dots b_1^{-1} d^{-1}$

•
$$x = uvw = u' \underbrace{p_k db_1 \dots b_l p_k^{-1}}_{=1} w' = u'w' \in \mathscr{U}(1)$$

- Let x label a circle at the root.
- If it lies completely in Γ , we have $x \in \mathcal{U}(1)$ by induction.
- Otherwise, factorize it_at P_k :

- W.l.o.g.: no other P_k visits
- We know: $u = u'p_k$ and $w = p_k^{-1}w'$
- Options for *v*
 - $v = p_i p_i^{-1}$
 - $v = bb^{-1}$
 - $v = db_1 \dots b_l d$
 - $v = db_1 \dots b_i b_i^{-1} \dots b_1^{-1} d^{-1}$

• We re-use the grammar for $S\Gamma(1)$.

- We re-use the grammar for $S\Gamma(1)$.
- This time we don't start with a single node but with the Cayley graph of G.

- We re-use the grammar for $S\Gamma(1)$.
- This time we don't start with a single node but with the Cayley graph of G.
- Add the appropriate "decorations" to each node:

- We re-use the grammar for $S\Gamma(1)$.
- This time we don't start with a single node but with the Cayley graph of G.
- Add the appropriate "decorations" to each node:

• Then: show the same things as for $S\Gamma(1)$...

• We can most likely get $G\star\mathbb{Z}$ as the maximal group image.

• We can most likely get $G \star \mathbb{Z}$ as the maximal group image. Right now: free group of higher rank

- We can most likely get $G \star \mathbb{Z}$ as the maximal group image. Right now: free group of higher rank
- Open: Can we get G as the maximal group image?

- We can most likely get $G \star \mathbb{Z}$ as the maximal group image. Right now: free group of higher rank
- Open: Can we get G as the maximal group image?
- We can probably create any suitable lattice of finitely presented groups.

- We can most likely get $G \star \mathbb{Z}$ as the maximal group image. Right now: free group of higher rank
- Open: Can we get G as the maximal group image?
- We can probably create any suitable lattice of finitely presented groups.
- What about recursively presented groups?

Thank you!