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Special Monoids and the Inverse E-Unitary Case

Theorem (Malheiro; 2005)

M: special (ordinary, non-inverse) monoid
All maximal subgroups are isomorphic to the group of units:

Theorem (Gray, Kambites; arXiv 2023)

M: E-unitary special inverse monoid
All maximal subgroups virtually embed into the group of units:
Ve € E(M) : [e]H >ri H— {1]7.[

In both cases: The group of units “dominates” the maximal subgroups.

What about arbifrary (non—E—unitary) inverse monoids?
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Reminder: The Word Problem

Theorem (lvanov, Margolis, Meakin; 2001)

The word problem for one-relator monoids reduces to the word problem for special one-relator
inverse monoid. « these are generally not E—unitary:
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The Non-E-Unitary Case

Theorem (Gray, Kambites, W.; WIP)

G: finitely presented group —> IMg : special inverse monoid s. t.
@ the group of units [1]y is trivial and

@® G is the maximal subgroup at some idempotent e (i.e. [e|y ~ G)

Theorem (Stephen; 1990)

e: idempotent in an inverse monoid M = Aut SI'(e) ~ [e]y

Thus: We need to construct Mg such that
@ SI'(1) has trivial automorphism group and
@® the automorphism group of SI'(e) is G.
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G=Mon(B|r =---=rg=1): any finitely presented group with r, € B’
€eGo: Mon(b,c|bc=cb=1)~7Z
Mg = Inv<B, Po, Pl,---,PR, d ‘ 1 p,-bp,._1 p,-bflp,-_1 =1forall be B,icA{0,...,R},
11: podpa1 =1,
1171 pkdrkdp;1 =1forall ke {1,...,R} >

Graphically:
I 11 111
Pi
o——=e pO
. b d
.—I?I—“

where r, = by ... b,
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Idea of the Construction

® Consider the idempotent e = pglpo Hle p;lpk:

Relations:
Pi

-

o
S
[ ]

We attach a “decorated” loop labeled by a relator.

Iy ® ~ “decorated” Cayley graph of G
11 furns oud: the additional parts yield no additional automorphisms!

® How can we make this formal? We need an appropriate description!
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A Grammar to Describe Tree-Like Graphs

Example
V= {A, B} : set of nonterminals X = {a, b} : edge labels
Rules: Generated Graph: vs ‘infermediate graphs”
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A Grammar for SI'(1)

Pi
Relations: 1—° G )
Py — !

Pi

o———= PN
, N
b 1\ /l
pi A

.—)I—GI N

NP
alﬁ - ” G

P —
S bj
1i— \\\P,-f)//l— —I;i—

~ -
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How do we Know that this Indeed Generates SI'(1)?

Theorem (Stephen; 1990)

M=Tnv(A|\i=1) ec A" withe? =ein M T :A" '-labeled directed graph with root q
'~ ST'(e) <~
® [ is symmetric, strongly connected, deterministic ~ ~» check neighborhoods
®cc Z(q,q) ~ trivial fore=1
©@Vpel:\ie Z(pp) ~ check extended neighborhoods
0O £(q,q9 CU(e)={uc A |u>eine}
~ This s the tricky part:

In our grammar: the neighborhood is fully determined by the nonterminal!

This neighborhood characterization also helps us to show that there are no automorphism.
Nofe: We only have to show that the root must be mapped to itself.
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Again: The Grammar for SI'(1)

Relations: s
pi N
o——0 N .
b alg— o G
Pi .
——e *

//‘\\ pj
b, 1,’*}( Pib I--<--0
y P

Pk . -
&\ deterministic v’
relations readable v
images of the root v/
only 1 or 1; ~ “pib= 1"
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Upward Closure

® It remains to show: .Z(q,q) C Z (1) ={uc A~ |u>1in e}
Formally, we define the generated graph I'* as the direct limit of the intermediate graphs I'.

Thus: It suffice to show the inclusion for all intermediate graphs!

This allows for an inductive argument:
Assume: T turns into I' in one step and £ (I") C % (1)
To show: Z(I") C % (1)
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Sketch of the Induction

® | et x label a circle at the root.

If it lies completely in I', we have
x € 7 (1) by induction.

Otherwise, factorize it at Py:

W.l.o.g.: no other Py visits

We know: u = u'py and w= p,'w

e QOptions for v
* v=pip; |
v=bb"!

° X:UVW:u’pkdbl...b/p;lm/:L/M/G%(l)
—_——

=1

[ ]
® v=dby...bd
® v=dby...bib ' .. b d!
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What About the Grammar for SI'(e)?

® We re-use the grammar for SI'(1).
® This time we don't start with a single node but with the Cayley graph of G.

® Add the appropriate “decorations” to each node:

Po
/P
wigb 1/1 g :: :gb |

d

e Then: show the same things as for SI'(1)..
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® We can most likely get G+ Z as the maximal group image.
Rquf Nnow: free group of higher rank

Open: Can we get G as the maximal group image?

® We can probably create any suitable lattice of finitely presented groups.

What about recursively presented groups?
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Thank you!
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